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PHY 712 Electrodynamics
10-10:50 AM  MWF  Olin 103

Lecture 30: Continue reading Chap. 14 – (Especially 14.6)

Radiation by accelerating charged particles – 

particularly the analysis of of synchrotron radiation

1. Review of the basic equations

2. Detailed analysis of synchrotron radiation generated 
from man-made facilities

3. Synchrotron radiation from astronomical sources

Presenter Notes
Presentation Notes
In this lecture, we will continue discussing the material presented in Chap. 14 of Jackson’s textbook on the subject of radiation from accelerating charged particles.
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The results discussed in today’s lecture come from the following 
1949 paper of Julian Schwinger --

Presenter Notes
Presentation Notes
This famous paper by Julian Schwinger discusses some of the details presented on these slides.
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Radiation from a moving charged particle analyzed by 
Liénard-Wiechard --
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Presenter Notes
Presentation Notes
Here is the general diagram we have been using to denote the field point r and the trajectory R_q(t).
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From Liénard-Wiechard analysis, the electric and magnetic 
fields far from source are given by --
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Presenter Notes
Presentation Notes
Specializing the equations to fields in the radiation zone.
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Poynting vector:
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Presenter Notes
Presentation Notes
Evaluating the Poynting vector for the radiation zone.
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Power radiated
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Presenter Notes
Presentation Notes
The general expression for the power per unit solid angle.    



04/07/2025 PHY 712  Spring 2025 -- Lecture 30 10

Spectral composition of electromagnetic radiation
     Previously we determined the power distribution from
     a charged particle:
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Presenter Notes
Presentation Notes
Now we will return to the power measured with respect to the field time (as opposed to the retarded time).     In this way will be able to use the beautiful mathematics of Fourier transforms to analyze the spectral properties of the radiation.     Here we imagine that the radiation is measured  at a given location for a long period of time so that we will want to evaluate the time integrated power W.



04/07/2025 PHY 712  Spring 2025 -- Lecture 30 11

Spectral composition of electromagnetic radiation -- continued
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http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html

Presenter Notes
Presentation Notes
Here we make use of the Parseval’s theorem which allows us to relate the time integral of the power to the frequency integral of its Fourier transform.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html


04/07/2025 PHY 712  Spring 2025 -- Lecture 30 12

Spectral composition of electromagnetic radiation -- continued

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) 22

2

0

22

0

2

22

~2

~~~

~~   : thatNote

~

:analysis sParseval' of esConsequenc

ω
ω

ω
ωωωωωω

ωω

ωω

A

AAA

AA

AA

*

≡
∂Ω∂

∂

∂Ω∂
∂

≡




 −+==

Ω

−=

==
Ω

=
Ω

∫∫∫

∫∫∫

∞∞∞

∞−

∞

∞−

∞

∞−

∞

∞−

I

Iddd
d
dW

dtdt
d

tdPdt
d
dW

Presenter Notes
Presentation Notes
Mathematically,  the theorem involves integrals over all frequencies, while physically negative frequencies are not measured.     By using the fact that the power amplitude must be real (mathematically),   we can then derive a formula for the intensity I as a function of frequency and solid angle.



04/07/2025 PHY 712  Spring 2025 -- Lecture 30 13

Spectral composition of electromagnetic radiation -- continued
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Presenter Notes
Presentation Notes
Here we analyze the power amplitude in order to take its Fourier transform.      Apparently, if we can evaluate this integral, we can determine the intensity spectrum. 
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Spectral composition of electromagnetic radiation -- continued
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Presenter Notes
Presentation Notes
The integral must be performed over the field time, but the argument of the integral is expressed in terms of the retarded time.    Fortunately, we can use the relationship between the two in order to perform the actual integral in terms of the retarded time.
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Spectral composition of electromagnetic radiation -- continued
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Presenter Notes
Presentation Notes
Here we make use of some approximations valid far from the source.
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Spectral composition of electromagnetic radiation -- continued
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Presenter Notes
Presentation Notes
Summarizing the approximations.



04/07/2025 PHY 712  Spring 2025 -- Lecture 30 17

( )
( )

( )( )

2

2 2
ˆ /

22

/

ˆ ˆ

4 ˆ1
r q r

r

i t t c
r

t t R c

I q dt e
c

ω

ω π

∞
− ⋅

−∞
= −

 × − ×∂  =
∂ ∂Ω − ⋅∫

r Rr r β β

β r



Spectral form of radiation far from source:

2

2 .

In order to analyze this expression, we need to know

the particle trajectory
( )

( ),  its velocity ,

( )
and its acceleration 

 q r
q r

r

q r

r

t
t c

dt
t

c
dt

d

d

=

=

R
R

R

β

β

Presenter Notes
Presentation Notes
In the last lecture, we attempted a simple example.   Here we will jump into the synchrotron case directly.
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Spectral composition of electromagnetic radiation – more 
detailed treatment  --
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Presenter Notes
Presentation Notes
We will evaluate this expression for synchrotron radiation.
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Some details --
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More details
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Spectral composition of electromagnetic radiation -- continued
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Presenter Notes
Presentation Notes
Summary of equations that need to be avaluated.
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Specific evaluation for particle moving in a circular 
path at a constant speed v --
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Presenter Notes
Presentation Notes
Setup of the coordinate system to analyze the particle trajectory.   Here rho denotes the circular radius and v denotes the particle speed (assumed to be constant).
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Presenter Notes
Presentation Notes
For this analysis we will assume that the radiation is detected in the x-z plane.    The angle theta is defined with respect to the x axis.   Two polarization vectors denoted with epsilonparallel and epsilonperpendicular  (both perpendicular to r) are defined.
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Presenter Notes
Presentation Notes
Here the two amplitudes C for parallel and perpendicular polarizations are defined in terms of the trajectory parameters.
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We will analyze this expression for two different cases.  The first case, is
appropriate for man-made synchrotrons used as light sources.   In this case,
the light is produced by short bursts of electro
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frequency 3
2c
cγω
ρ

≡

22 32 2 2
2 2 2 2 2 2

2/32

232 2
2 2 2

1/32 2

3 (1 ) (1 )
4 2

             (1 )
1 2

c c

c

d I q K
d d c

K

γ ω ωγ θ γ θ
ω π ω ω

γ θ ω γ θ
γ θ ω

    = + +   Ω     
   + +   +    

Presenter Notes
Presentation Notes
Following Jackson’s derivations, we arrive at the expression given on the slide that is equivalent to Jackson’s Eq. 14.79.    The two terms represent the two different polarization contributions.    Both terms are expressed in terms of Bessel function of the third kind of order 1/3  or 2/3.
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Modified Bessel functions

( ) ( )[ ] ( ) ( )[ ]∫∫
∞∞

+=+=
0

3
3
1

2
3

3/2
0

3
3
1

2
3

3/1 sin 3      cos 3 xxxdxKxxdxK ξξξξ

( )( ) ( )

( )( ) ( )

( )
( )

2

2 3
2 2 3

2 2

3/22 2
1/23 2 2

ˆ / cos sin /

1In the limit of   0,    0,   1
2

3 1ˆ / 1
2 6 2 3

  where   1   and  
3 1

r q r r r

r

r r
r q r

r

t t c t vt
c

t v c

t c tt t c x x

c tx
c

ρω ω θ ρ

θ
γ

ω ωω γ θ ξ
γ ρ

ωρ γξ γ θ
γ ρ γ θ

 − ⋅ = − 
 

 
≈ ≈ ≈ − 

 

 − ⋅ ≈ + + = + 
 

= + =
+

r R

r R

Exponential factor

Some details:

Presenter Notes
Presentation Notes
Here are some of the details.    It is assumed that the integrands are dominated by contributions for tr near 0, theta near 0 and speeds v close to the speed of light.
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c

c

By plotting the intensity as a function of , we see that the
intensity is largest near ω ω . The plot below shows the 
intensity as a function of ω/ω for γθ=0 , 0.5 an : d 1

ω
≈

2d I
d dω Ω

c ω/ω  

22 32 2 2
2 2 2 2 2 2

2/32

232 2
2 2 2

1/32 2

3 (1 ) (1 )
4 2

             (1 )
1 2

c c

c

d I q K
d d c

K

γ ω ωγ θ γ θ
ω π ω ω

γ θ ω γ θ
γ θ ω

    = + +   



 Ω      

  
+ +  + 



 





γθ=0 

γθ=0.5 

γθ=1 

Presenter Notes
Presentation Notes
From the expression, we can plot the intensity as a function of the scaled frequency scaled by the critical frequency defined on the previous slide for various angles theta.
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2 22

222 32 2
2 2 2 2 2 2

2/32

22 32 2 2 2 2
2 2 2 2 2 2

1/32 2 2

3 (1 ) (1 )
4 2

3 (1 ) (1 )
4 1 2

c c

c c

d I d Id I
d d d d d d

d I q K
d d c

d I q K
d d c

ω ω ω

γ ω ωγ θ γ θ
ω π ω ω

γ ω γ θ ωγ θ γ θ
ω π ω γ θ ω

⊥

⊥

= +
Ω Ω Ω

   
= + +   Ω      

   
= + +   Ω +      





More details

/ cω ω

2

 for 0
I

θγ
ω
∂

=
∂ ∂Ω



2

 for 1
I

θγ
ω
∂

=
∂ ∂Ω



2

 for 1I θγ
ω

⊥∂
=

∂ ∂Ω

Presenter Notes
Presentation Notes
More plots.   The fact that the frequency scales with the critical frequency means that by designing facilities with different radii and gamma factors, the spectral range can be controlled.
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Why assume

2

1  0,    0,   1    ???
2rt v cθ
γ

 
≈ ≈ ≈ − 

 

The above analysis applies to a class of man-made facilities 
dedicated to producing intense radiation in the continuous 
spectrum.   For more specific information on man-made 
synchrotron sources, the following web page is useful: 
http://www.als.lbl.gov/als/synchrotron_sources.html.

http://www.als.lbl.gov/als/synchrotron_sources.html
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Synchrotron radiation light source installations

Synchrotron at Brookhaven National Lab, NY

Ec= 3 GeV     X-ray radiation

https://www.bnl.gov/ps/

Presenter Notes
Presentation Notes
This is an arial photo of the facility on Long Island, NY.

https://www.bnl.gov/ps/
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Spectrometer 
and sample

Presenter Notes
Presentation Notes
Diagram showing the positioning of the experimental ports in red where the radiation from the circulating electrons is used.
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Overview of developed 
beamlines.

Presenter Notes
Presentation Notes
More detail with indications of particular experiments.
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Advanced photon source, Argonne National Laboratory

https://www.aps.anl.gov/

Presenter Notes
Presentation Notes
Arial photo of the facility of Argonne National Laboratory
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https://lightsources.org/lightsources-of-the-world/

https://lightsources.org/lightsources-of-the-world/
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The second example of synchrotron radiation comes from a 
distant charged particle moving in a circular trajectory such 
that the spectrum represents a superposition of light  
generated over many complete circles.   In this case, there is 
an interference effect which results in the spectrum consisting
of discrete multiples of v/ρ. For this case we need to 
reconsider the analysis. There is a very convenient Bessel 
function identity of the form:

sin    Here  is a B

.

essel function of integer e order .

In ou a

( )e ( )

cor c se  an  s d

ix u imu
m

m
mJ x x

vtx u
c

J m

ωρ θ
ρ

∞
− −

=−∞

=

= =

∑

( cos sin( / )) ( cos sin( / ))
( ) sin( / )e e

c

     =

os

cos 2 ( ).
cos

i t vt i t vt
c c

m
m

cC dt vt dt
i

c vJ m
i c

ρ ρω θ ρ ω θ ρ
ω ρ

ωρ θ
ωρ θ πδ ω

ωρ θ ρ

− −∞ ∞

−∞ −∞

∞

=−∞

∂
=

− ∂

∂   −∂ 

=

− 

∫ ∫

∑



Presenter Notes
Presentation Notes
Now consider another geometry for synchrotron radiation from charge particles in outer space moving in circular orbits due to magnetic fields for example.   The equations are still true.    We can analyze those equations using the given identity involving a series of Bessel functions.
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Astronomical synchrotron radiation -- continued:

( cos sin( / ))
( ) sin cos( / )e

tan        

Similarly:

   =2 cos ( ).
/

i t vt
c

m
m

C dt vt

vJ m
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ω θ ρ

θ ωρπ θ δ ω
ρ

−∞

⊥ −∞
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=

  − 
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∫

∑
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e 2 ( ).
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N

 

ote that:

)
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(

vi m t

m
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m
m

vdt m

vC i J m
c

dJ xJ x
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ω
ρ πδ ω
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ωρω π θ δ ω

ρ

−∞

−∞

∞
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′
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≡

∫

∑


Presenter Notes
Presentation Notes
Some details are listed here.
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Astronomical synchrotron radiation -- continued:
In both of the expressions, the sum over m includes both 
negative and positive values. However, only the positive 
values of ω and therefore positive values of m are of 
interest. Using the identity:                                      the
result becomes:

( ) ( 1) ( ),m
m mJ x J x− = −

2

2 22 2 2 2

2 2
0

tan( ) cos cos .
/m m

m

d I
d d

q vm J J
c c v c c

ω

ω β ωρ θ ωρδ ω θ θ
ρ

∞
′

=

=
Ω

        − +               
∑

These results were derived by Julian Schwinger (Phys. Rev. 
75, 1912-1925 (1949)). The discrete case is similar to the 
result quoted in Problem 14.15 in Jackson's text. 
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