PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Lecture 30: Continue reading Chap. 14 — (Especially 14.6)
Radiation by accelerating charged particles —

particularly the analysis of of synchrotron radiation

1. Review of the basic equations

2. Detailed analysis of synchrotron radiation generated
from man-made facilities

3. Synchrotron radiation from astronomical sources
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Presenter Notes
Presentation Notes
In this lecture, we will continue discussing the material presented in Chap. 14 of Jackson’s textbook on the subject of radiation from accelerating charged particles.


Radiation from time harmonic sources
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PHY 712 -- Assignment #26
Assigned: 4/07/2025 Due: 4/09/2025

Continue reading Chap. 14 in Jackson .

In class, we showed how the synchotron radiation spectrum is scaled by the critical frequency wy or critical energy

E = hwy. Using the intensity formula for radiation in the parallel plane at 8=0, for a beam with E;=10 GeV, estimate

the intensity relative to peak intensity for the following types of radiation (noting your choice of wavelength or
frequency for each range)

1. Infrared
2. Visable
3. Xray
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The results discussed in today’s lecture come from the following

1949 paper of Julian Schwinger --

PHYSICAL REVIEW

VOLUME 75,

NUMBER 12 JUNE 15, 1949

On the Classical Radiation of Accelerated Electrons

JuLiAN SCHWINGER
Harvard University, Cambridge, Massachusetts

(Received March 8, 1949)

This paper is concerned with the properties of the radiation
from a high energy accelerated electron, as recently observed
in the General Electric synchrotron. An elementary derivation
of the total rate of radiation is first presented, based on Lar-
mor's formula for a slowly moving electron, and arguments of
relativistic invariance. We then construct an expression for
the instantaneous power radiated by an electron moving
along an arbitrary, prescribed path. By casting this result
into various forms, one obtains the angular distribution, the
spectral distribution, or the combined angular and spectral
distributions of the radiation. The method is based on an
examination of the rate at which the electron irreversibly
transfers energy to the electromagnetic field, as determined by
half the difference of retarded and advanced electric field
intensities. Formulas are obtained for an arbitrary charge-
current distribution and then specialized to a point charge.
The total radiated power and its angular distribution are ob-
tained for an arbitrary trajectory. It is found that the direc-

tion of motion is a strongly preferred direction of emission at
high energies. The spectral distribution of the radiation de-
pends upon the detailed motion over a time interval large
compared to the period of the radiation. However, the narrow
cone of radiation generated by an energetic electron indicates
that only a small part of the trajectory is effective in producing
radiation observed in a given direction, which also implies
that very high frequencies are emitted. Accordingly, we
evaluate the spectral and angular distributions of the high
frequency radiation by an energetic electron, in their de-
pendence upon the parameters characterizing the instan-
taneous orbit. The average spectral distribution, as observed
in the synchrotron measurements, is obtained by averaging
the' electron energy over an acceleration cycle. The entire
spectrum emitted by an electron moving with constant speed
in a circular path is also discussed. Finally, it is observed that
quantum effects will modify the classical results here obtained
only at extraordinarily large energies.

ARLY in 1945, much attention was focused on
the design of accelerators for the production of
very high energy electrons and other charged par-
ticles.! In connection with this activity, the author
investigated in some detail the limitations to the

is instantaneously at rest is

P 2;:?(1r;hr)2 2 e dp)2
3o\ dt _3m263(d1

(I.1)
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Presenter Notes
Presentation Notes
This famous paper by Julian Schwinger discusses some of the details presented on these slides.


%adiation from a moving charged particle analyzed by
Liénard-Wiechard --

. y,
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Presenter Notes
Presentation Notes
Here is the general diagram we have been using to denote the field point r and the trajectory R_q(t).


Alfred-Marie Liénard

Born Alfred-Marie Liénard
2 April 1869
Amiens, France
Died 29 April 1958 (aged 89)

Paris, France

Known for Lienard equation
Liénard—Chipart criterion
Liénard—Wiechert potential

Awards Poncelet Prize (1929)
Scientific career

Institutions Ecole des Mines de Saint-Etienne
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Born

Died
Nationality
Citizenship

Alma mater

Known for

PHY 712 Spring 2025 -- Lecture 30

Emil Johann Wiechert

Emil Johann Wiechert

26 December 1861
Tilsit, Province of Prussia,
Kingdom of Prussia

19 March 1928 (aged 66)
Gottingen, Germany

German
German

University of Konigsberg,
University of Gottingen
Lienard—Wiechert potential
Maxwell-Wiechert model



From Liénard-Wiechard analysis, the electric and magnetic
fields far from source are given by --

B(r.1)= qu{RKRRJ}}

R —

Note that all of the variables on the
R x E(r,t) _ _ _
B(r,t)z right hand side of the equations

R depend on ¢, .
R R(,) . R()
R, (t,)= cj’tr =v R(z,)=r-R_(t,)=R 1, =t- =t —
Let ﬁEB ﬁEX BEX
R C &

E(r,t)= . q - {f{x[(ﬁ—ﬁ)x[ﬂ} B(r,t)=RxE(r,¢)

A \3
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Presenter Notes
Presentation Notes
Specializing the equations to fields in the radiation zone.


Poynting vector:

S(r.1)=,—(ExB)

E(r,r) = ——— R (R-p)xB |

cR(l—B-ﬁ)

B(r,t):ﬁxE(r,t)

2

C

S(r,t)=—R[E(r,7)] =1 szX-(R_B)tBJ
47 47xcR’ [I_B,ﬁ)



Presenter Notes
Presentation Notes
Evaluating the Poynting vector for the radiation zone.


Power radiated

S(r,t)—if{‘E(r,t)z
d_P_S,IA{R2_ qz R x



Presenter Notes
Presentation Notes
The general expression for the power per unit solid angle.    


Spectral composition of electromagnetic radiation
Previously we determined the power distribution from

. . n n . 2
a charged particle: RX[(R—B)XBJ

dP(t) :S-ﬁRZ B q2
dQl drrc (1_ﬁ°ﬁ)6

t.=t—R/c

-l

where (l(t) c [(ﬁ_?)jl}]
4rc (l—ﬁ-R)

t.=t—R/c

Time integrated power per solid angle:

d—W f dP( ]Odz\a [ dold( i



Presenter Notes
Presentation Notes
Now we will return to the power measured with respect to the field time (as opposed to the retarded time).     In this way will be able to use the beautiful mathematics of Fourier transforms to analyze the spectral properties of the radiation.     Here we imagine that the radiation is measured  at a given location for a long period of time so that we will want to evaluate the time integrated power W.


)
Spectral composition of electromagnetic radiation -- continued

Time integrated power per solid angle :

o0

j j diac) = ];da)‘d ()

Fourier amphtude ;

n~~/

a(w)zﬁj dr @(t) e [des @(w)

1
U\t)=—
(¢) ;7d
Parseval’'s theorem

Marc-Antoine Parseval des Chénes 1755-1836

http://Iwww-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html



Presenter Notes
Presentation Notes
Here we make use of the Parseval’s theorem which allows us to relate the time integral of the power to the frequency integral of its Fourier transform.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Parseval.html

Spectral composition of electromagnetic radiation -- continued

Consequences of Parseval's analysis:

Cul jd jd\a :Tda)‘éi(a)){z

Note that: (a)) -’ (- o)

W Jao@(o) = Jaef @] +[at-o )= a0 L

0 0
82
0Qow

= 2‘&(0))‘2


Presenter Notes
Presentation Notes
Mathematically,  the theorem involves integrals over all frequencies, while physically negative frequencies are not measured.     By using the fact that the power amplitude must be real (mathematically),   we can then derive a formula for the intensity I as a function of frequency and solid angle.


Spectral composition of electromagnetic radiation -- continued
7 Rx[(R—B)x[}]‘
drc (1 —B- ﬁ)3

For our case: a(t)=

t.=t—R/c

Fourier amplitude°

d(w)= joodt e (1)

\/7 j dt &

R>< —p)x[}]
1 B R)

t.=t—R/c


Presenter Notes
Presentation Notes
Here we analyze the power amplitude in order to take its Fourier transform.      Apparently, if we can evaluate this integral, we can determine the intensity spectrum. 


Spectral composition of electromagnetic radiation -- continued

Fourier amplitude :
()= ﬁ]idt a(t) e
) q_z2 sz R x [(R—B)x B] »
87°c (I_B.ﬁ)’ e
ki

t,=t—R/c


Presenter Notes
Presentation Notes
The integral must be performed over the field time, but the argument of the integral is expressed in terms of the retarded time.    Fortunately, we can use the relationship between the two in order to perform the actual integral in terms of the retarded time.


Spectral composition of electromagnetic radiation -- continued

Working expression :

R x [(ﬁ — ﬁ) X B}‘ eia)(;,JrR(tr)/C)
r - R

2

dR, (1,)
dt

r

Recall: R ()= =v R(z,)=r-R (z)=R

For r>>R (t) R(t.)=r-r-R_(t,) where p=l
r

N

At the same level of approximation: R =r


Presenter Notes
Presentation Notes
Here we make use of some approximations valid far from the source.


Spectral composition of electromagnetic radiation -- continued

Working expression:

: o R (R-B)B]|
a(a)) — q2 j dtr ( - )2 ela)(tr+R(tr)/c)

e * l—B-R)

t.=t—R/c

ForR=r:
a~ (a)) — qZ za)(r/c) T dl‘ f X [(f - ﬁ) X B:H eia)(tr_f'Rq(tr)/C)

8717 L (1_|3.f)2

t.=t—R/c

Resulting spectral intensity expression:

0’1 _ qz Tdf f'x[(f‘—[})x[}]‘ eia)(l‘r—f’-Rq(tr)/c)
0wdQ) 4r’c|® (1_ﬁ.f)2

t.=t—R/c



Presenter Notes
Presentation Notes
Summarizing the approximations.


®
=>» Spectral form of radiation far from source:

0’1 q2 szdl‘r f'x[(f'—[}):ﬁ]‘ io(t,—FR, (4, )/c)
S (1-B-)

t.=t—R/c

In order to analyze this expression, we need to know
dR (1,)
dt.

r

the particle trajectory R_(z,), its velocity Bc =

d’R,(1,) |
dt’

r

and 1ts acceleration B¢ =


Presenter Notes
Presentation Notes
In the last lecture, we attempted a simple example.   Here we will jump into the synchrotron case directly.



Spectral composition of electromagnetic radiation — more
detailed treatment --

Alternative expression --

It can be shown that:

Ex[(F-B)xB] (
(1

(f'x[})j
(1-p-t)"  d | (1-B-F)

Integration by parts and assumptions about the integration

limit behaviors shows that the spectral intensity depends on

the following integral:

52 ‘0’| T A A iolt, -t-R_(t,)/c
o oo



Presenter Notes
Presentation Notes
We will evaluate this expression for synchrotron radiation.


Some details --
Spectral intensity expression that needs to be evaluated:

0’1 - g Ta’t e<_rR())

0woQ)  4r’c




More details

Comes from integration by parts --

dG(x) 2 dF(x)

j dx F(x) j dx d— (F(x)G(x)) - jw _

G(x)




Spectral composition of electromagnetic radiation -- continued
When the dust clears, the spectral intensity depends

on the following integral:

o'l q'w’ o, R, (5)/¢) T (#
0000 Arc j‘” LN )]

In order to analyze this expression, we need to know
the particle trajectory R _(¢,), its velocity pc =dR (¢,)/ dt,.

Recall that the spectral intensity 1s related

to the time 1ntegrated power:

dP 0’1
j ar 2D (t) j do—"—



Presenter Notes
Presentation Notes
Summary of equations that need to be avaluated.


Specific evaluation for particle moving in a circular
path at a constant speed v --



Ay Spectral intensity relationship:
2
. 1 ¢ jdt e oft,—#-R, (1,)/c) [fx(f'x[}(t ))]
0woQ 47[ c '
0 >y
Top view.

X
R, (t.)=pXsin(vt, / p)

+ p§r(l—cos(vtr/p))
B(z)= ,B(f(cos(vtr / p)+ysin(w, /,0))

For convenience, choose:

r=xcos@+zsind



Presenter Notes
Presentation Notes
Setup of the coordinate system to analyze the particle trajectory.   Here rho denotes the circular radius and v denotes the particle speed (assumed to be constant).


z R, (t.)=pXsin(vt, / p)
r + py(l—cos(vtr /,0))
5 ) X B(z)= ,B(f(cos(vtr / p)+§ysin(vt, /,0))

For convenience, choose:

x r=Xcos@+zsind

Note that we have previous shown that in the radiation zone,
the Poynting vector is in the r direction; we can then
choose to analyze two orthogonal polarization directions:

N

g =Yy €, = —Xxsmnf+zcosl

Fx(FxP)= ,B( sin(ve, / p)+¢€, sin@cos(vt, /,0))


Presenter Notes
Presentation Notes
For this analysis we will assume that the radiation is detected in the x-z plane.    The angle theta is defined with respect to the x axis.   Two polarization vectors denoted with epsilonparallel and epsilonperpendicular  (both perpendicular to r) are defined.


=y €, = —Xsin@+2zcosb
x (1 x

B)=

(
£
— Y ( (sin(vz, / p)+¢g, sin@cos(vr, /p))

2 2 2 L 2
dd ;Q = Z = | fx(fxﬂ)e’”(t_r'R"(”/c)dt‘
aQ 7T CI|"
d2] q2a)2182 , ,
5= G@f +C(@)F]

za)(t—ﬁ cos@sin(vt/ p))

C ()= j dtsin(vt/ p)e

za)(t—— cos@sin(vt/ p))

C (w)= j dtsin @ cos(vt/ p)e
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Presenter Notes
Presentation Notes
Here the two amplitudes C for parallel and perpendicular polarizations are defined in terms of the trajectory parameters.


We will analyze this expression for two different cases. The first case, 1s
appropriate for man-made synchrotrons used as light sources. In this case,

the light 1s produced by short bursts of electrons moving close to the speed

of light (v~ c¢(1-1/(2y7)) passing a beam line port. In addition, because
of the design of the radiation ports, &€ = 0, and the relevant integration
times ¢ are close to ¢ =~ 0. This results in the form shown in Eq. 14.79

of your text. It is convenient to rewrite this form in terms of a critical
3cy’
frequency @, = r
2p

2 2
d*1 3¢°7 [ @ Y nn W S,
— 1+v°6 K —(1+yv°0°)?
dwdQ 4r’c ., (1+7°07) Bl 2w (1+°67)

2
22 3
79 C() 2 2 ~
+—2L 7 K| 21+ %0%)
1+7/2¢92{ 1/3(2a)( 79 H

C

C


Presenter Notes
Presentation Notes
Following Jackson’s derivations, we arrive at the expression given on the slide that is equivalent to Jackson’s Eq. 14.79.    The two terms represent the two different polarization contributions.    Both terms are expressed in terms of Bessel function of the third kind of order 1/3  or 2/3.


Some detalils:

Modified Bessel functions
K,5(&)=3]dveos|3&lr+1x)] K, ,(6) =3[ dv xsin[3&(r+1x7)
0 0
Exponential factor

a)(tr -I-R, (tr)/c) = a)(z‘r —Bcosﬁsin(vt,, /p)j

C

In the limitof ¢ =0, 6=0, Vzc(l— lzj
2y

. wt, wc’t’ 3 1
Q)(tr—r'Rq(tr)/C)zzyz (1‘|—7/292)+ 6p2 :55()(4‘5)6'3]
where &=-2F 3 (1+7/292 )3/2 and x = YL,

3cy p(l + 70’ )1/2


Presenter Notes
Presentation Notes
Here are some of the details.    It is assumed that the integrands are dominated by contributions for tr near 0, theta near 0 and speeds v close to the speed of light.


.

2 2
d’l 3¢°7( o 2 22 @ 2 s
= 1+v°6 K ——(1+y°60°)2
dodQ 47’c |\ w (I+7°07) Pl 2w (147707

C

2
2Nn2 3
y-0 0 NPT
+—- | K — (1+7°60)2
1+7/26?2|: 1/3(2(0( 7o) ﬂ

C

By plotting the intensity as a function of w, we see that the

intensity 1s largest near ® = w_. The plot below shows the

intensity as a function of w/w_ for y0=0, 0.5 and 1:



Presenter Notes
Presentation Notes
From the expression, we can plot the intensity as a function of the scaled frequency scaled by the critical frequency defined on the previous slide for various angles theta.


.

More details
1 __ d’l, d'l,
dodQ) dwodQ) dod()
Il 3¢ (o)
dodQ 4r’c\ o

)
(1+y°0%)’ {Km (— 1+
2w

C

2
d’1 3¢ [ o °9*
1 q 7/ (1+7/282)2 7/ ; K1/3 2

7292)2H

dodQ  4r°c | o, 1+ 76
1.4-
1.2- 0’1
' ——— for Oy =0
17 Py 000
0.8- —L_ for Gy =1
0.6- @wO0C2
4 0L gor gy =1
- or =
0.4- o y
0.2‘_
0 - 1 ' ' '
0 1 2 3
o/ o,
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Presenter Notes
Presentation Notes
More plots.   The fact that the frequency scales with the critical frequency means that by designing facilities with different radii and gamma factors, the spectral range can be controlled.


Why assume
4 1 )
t =0, =0, v=c|l ~| 7?7
. 277

The above analysis applies to a class of man-made facilities
dedicated to producing intense radiation in the continuous
spectrum. For more specific information on man-made
synchrotron sources, the following web page is useful:
http://www.als.lbl.gov/als/synchrotron _sources.html.



http://www.als.lbl.gov/als/synchrotron_sources.html

Synchrotron radiation light source installations

Synchrotron at Brookhaven National Lab, NY

E.=3 GeV X-ray radiation

https://www.bnl.qgov/ps/
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Presenter Notes
Presentation Notes
This is an arial photo of the facility on Long Island, NY.

https://www.bnl.gov/ps/

Main
Entrance

Spectrometer
‘and sample
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Presenter Notes
Presentation Notes
Diagram showing the positioning of the experimental ports in red where the radiation from the circulating electrons is used.
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Presenter Notes
Presentation Notes
More detail with indications of particular experiments.


Advanced photon source, Argonne National Laboratory

https://www.aps.anl.gov/
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Presenter Notes
Presentation Notes
Arial photo of the facility of Argonne National Laboratory


https://lightsources.org/lightsources-of-the-world/

E Map Satellite [

Kevhoard shortriuts | Man data @2025 Imaanerv ®2025 NASA | Terms
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The second example of synchrotron radiation comes from a
distant charged particle moving in a circular trajectory such
that the spectrum represents a superposition of light
generated over many complete circles. In this case, there is
an interference effect which results in the spectrum consisting
of discrete multiples of v/p. For this case we need to
reconsider the analysis. There is a very convenient Bessel
function identity of the form:

e ™M = 3" J (x)e™ HereJ, (x) is a Bessel function of integer order m.

4 vt
In our case x = P ——cosf@ and u =
C ,0
. Yo, : . Yo, .
oo . iw(t——cos@sin(vt/ p)) C 8 oo iw(t——cos@sin(vt/ p))
C, (o) :j dtsin(vt/ p)e ¢ = j dte

—iwp 0cosb

= J ( coS 6’)2725((0 m—)
—za)p 8cos¢9 - o,


Presenter Notes
Presentation Notes
Now consider another geometry for synchrotron radiation from charge particles in outer space moving in circular orbits due to magnetic fields for example.   The equations are still true.    We can analyze those equations using the given identity involving a series of Bessel functions.


®
Astronomical synchrotron radiation -- continued:

Note that:

o i(0—-m2)t V

dte L =20 (w—m—).
o 0
C (o) =27ri Z J ( cosﬁj5(0) m—)
i c Yo,
where J (x) = PC),
dx
Similarly:

ia)(t—ﬁcos Osin(vt/ p))

C (w)= J-OO dtsin@cos(vt/ p)e

_27Ttan6? ZJ ( pcos&’)&(w m—).

v/ic g c Jo,


Presenter Notes
Presentation Notes
Some details are listed here.


Astronomical synchrotron radiation -- continued:
In both of the expressions, the sum over m includes both
negative and positive values. However, only the positive
values of o and therefore positive values of m are of
interest. Using the identity:J (x) = (=1)"J (x) the
result becomes: o me

d’l
dwdQ

2 222 o 2 2 2
g p Z&(w—ml){{ﬂn (%cosﬁﬂ + tzzm f{Jm [%cosﬁﬂ }
o — o, C v /c C
These results were derived by Julian Schwinger (Phys. Rev.

75, 1912-1925 (1949)). The discrete case is similar to the
result quoted in Problem 14.15 in Jackson's text.
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