PHY 712 Electrodynamics
10-10:50 AM MWF Olin 103

Notes for Lecture 35: Continued discussion
about quantum effects in electrodynamics

1. Summary of pure of eigenstates of the quantum
mechanical EM Hamiltonian and their properties

2. Various linear combinations of quantum mechanical
EM eigenstates

a. Black body radiation
b. Coherent states

c. Squeezed states

Note that we will conclude a few minutes early so that you can
fill out the course evaluation.

04/21/2025 PHY 712 Spring 2025 -- Lecture 35 1



24

Mon: 03/24/2025

Radiation from time harmonic sources

03/26/2025

Chap.9 #20
25 \Wed: 03/26/2025 Chap.9 & 10 |Radiation from scattering #21 03/28/2025
26 |Fri: 03/28/2025  Chap. 11 Special Theory of Relativity #22  103/31/2025
27 |Mon: 03/31/2025 |Chap. 11 Special Theory of Relativity #23 104/02/2025
28 Wed: 04/02/2025 Chap. 11 Special Theory of Relativity #24  104/04/2025
29 |Fri: 04/04/2024  |Chap. 14 Radiation from accelerating charged particles #25 04/07/2025
30 |Mon: 04/07/2025 |Chap. 14 Analysis of synchroton radiation #26 04/09/2025
31 |Wed: 04/09/2025 |Chap. 14 Synchrotron radiation and Compton scattering #27 104/11/2025
32 |Fri: 04/11/2025 |Chap. 13 & 15 |Other radiation -- Cherenkov & bremsstrahlung #28 104/14/2025

33

Mon: 04/14/2025

Special topic:E & M aspects of superconductivity

34

Wed: 04/16/2025

Special topic:Quantum effects in electrodynamics

Fri: 04/18/2025

Presentations |

35 [Mon: 04/21/2025 Special topic:More quantum effects in electrodynamics
Wed: 04/23/2025 Presentations |l
Fri: 04/25/2025 Presentations Il|

36 |Mon: 04/28/2025 Review

04/21/2025
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Tue. Apr. 22, 2025 — Physics Honors Presentations

Thurs. Apr. 24, 2025 — Physics Honors and Awards Ceremonies

4 PM in Olin 101
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Honors - Tuesday -

Presentations April 22, 2025

.

04/21/2025

The reaction of Catalase, Azide,
and Peroxide produces Nitroxyl.
New Insights on Oxidative Stress

and Biomarker Preservation Wake Forest
—— University
Advisor: Prof, D, Kim-Shapiro

Class of 2025
An Investigation of Quantum
Effects in the Exteriors and
Interiors of Black Holes Department of
Amanda Peake ph}’SiCS

Advisor: Prof. P. Anderson

B\  Berry Curvature and Thermal

Hall Transport in Bosonic

Systems Olin Physical

. Kate Choi Laboratory

Advisor: Prof. 5. Winter Room 101
4:00 PM

Investigations of Fe-S Cluster

Formations in DFT

Christopher Fivecoat
Advisor: Prof. T. Thonhauser
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The Physu:s Department Presents
the 2025
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and
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E Awards Ceremony: For the extraordinary dedication
of our department members
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Wednesday 4/23/2025

Presenter Name Topic
10:00-10:24 | Thomas Myers Ising Model
10:25-10:50 | Conall O'Leary

Friday 4/25/2025

Presenter Name Topic
10:00-10:24 | Julia Radike
10:25-10:50 | Bhargava Jogi R
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References for today’s lecture —

Consultation with Professor Kandada

Rodney Loudon, “The quantum theory of light” (1983)
Leonard Mandel and Emil Wolf, “Optical Coherence
and Quantum Optics” (2013)

Yanhua Shih, “An Introduction to Quantum Optics”
(2021) (some typos, but generally informative)

Paul R Berman and Vladimir S. Malinovsky,
“Principles of Laser Spectroscopy and Quantum
Optics” (2011)
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Review of what we learned from Lecture 34

For a single mode plane wave with wave vector k, frequency
®, and polarization c:

EM Field Hamiltonian acting on eigenstate |nk0> ;

where k denotes wavevector and o denotes polarization direction --
fixed _ T _
H o nka> = z (ha)k'ak'a'ak'a')|nka> = hmknk0'|nka>
k'c'
Here n _ =0,1,2,3,4.......

aka nk0> :\/E nka _1>
alta nk0> = \/nka +1|nk0 +1>

Commutation relations:

= _ =
[aka,ak.a.}—d{k.éw, [aka,ak.a.]—o [aka,ak.a.}—O




In terms of the same operators and with polarization unit vectors g, _ ——

Vector potential:

ko a)k
Electric field:
_ OA _ 7 ha)k ik-r—iwt t —(ik-r—iot)
E = 5 = E(r,t) = ’Z We, €, (akge —a, e )
Magnetic field:

B=VxA = B(rt)= ZZ\/ZV kxg, (akaeik'r_i”kt — aliae_(ik'r_i”"t))
€,0,



While the photon eigenstates |nk,0.> form a complete basis for describing

quantum electromagnetic fields, they have some troublesome properties
such as found in evaluating the field expectation values --

Vector potential:

< |A |nk o' > Z 2V€ <nk'a’ | (akaeik‘r_ia)kt + aliae_(ik'r_iwkt) )| nk'0'> = 0
0 k

Electric field:

(o ()| ) =i
ko

Magnetic field:

k ikr—iopt 1 —(ikr-iog) .
. <nk,a,|(akae a, e |nk,0,> =0

h
o \ 2V e,

o)

(. [B(r.0)|ny,. ) = kxe, <nk'o_'|(ako_eik-r—iwkt a4 e—(ik-r—ia)kt))|nk'6'> —0



Quantum properties of electrodynamics and the properties of
black body radiation (logical but not historically accurate
development of the idea).

1. The quantum nature of the radiation Hamiltonian means that
for each radiating frequency w,, the radiated energy is

hon forn, =0,1,2,..00, where n, denotes the number of photons.
2. If the radiating system 1s in thermal equilibrium at temperature
T', the process follows Bose-Einstein statistics, since photons have
spin 1.

3. After performing the summation over all n,, the internal energy

of the radiating system at temperature 7', 1s given by

U=

,where k, denotes the Boltmann constant.

NM8

exp(ha) /k T) 1



continuing --

4. Evaluating the summation over i, with the understanding that
@, = ck, and for a system with volume V', k; takes values

kl = V1/3
5. Converting the summation over i to an integral

1/2
2 2 2 . .
(nx +n, +n; ) for all possible integers n,n,,n_.

U=

|2 ho
> 3ja) dw
exp(ha)/k T)- 1 ey exp(hiw/ k,T)—1

NM8

Another aspect of blackbody radiation is the average photon number 7

each frequency w at temperature 7 :

1
<n> " ex —
p(ho/k,T)—-1



Returning to the ideal case of a single frequency radiation
mode, it turns out that lasers can output radiation very similar
to that so-called “coherent state” described by R. Glauber,
Physical Review 131, 2766 (1963)



o0 n —|a|2/2

Gauber's coherent state: |ca> = Z

2 M

Here o represents a complex amplitude

It 1s possible to prove the following identies for the coherent states:
1. <ca |ca> =1

2. <ca |a|ca> =

3. <ca |chr |ca> =a

2 2
_ pleA]
4. <ca cﬂ> =e




n —‘0!‘2/2

o
n) based on a single mode n —> n
HZ:(; \/; ‘ > g ko

c.)

Electric field: <Ca|E(r,f)|Ca>:i hao,

2Ve,

: . _ h iKr—iot *  —(ikr—iayt)
Magnetic field: (c, |B(r,t)|c,)=i /2Veoa)kkxgka (akaek M _q, e T )

Let o =Ae” where both A and ¥ are unitless real values.

c,)=-2 /;l;):o g Asin(k-r—af+y)

ca> —2\/21/260k Kk x akaAsin(k r—ot+y)

ikr—iogt

¥ —(ikr—iaygt)
‘c"ka (akae akae )

(ca|E(r.1)

(c.|B(r.7)




Single mode coherent state continued

It can also be shown that

HE )= Zi) (4/\25111 (k-r—a)kt+w)+1)
Therefore
(e |[E0 e~ [(e. [E(r.0)e, ) = 2%

2Ve,

This means that variance of the E field for the coherent
state is independent of the amplitude A. Therefore, for
large A the variance is small in comparison.



Visualization of
coherent state
electric fields
for various
amplitudes

Source:

R. Loudon,
“The Quantum
Theory of
Light”

The quantized radiation field 131

1
z

Electric field in units ef (Awi2¢, V)

N A
I X

FiG. 4.3. Pictorial representation of the electric-field variation in a cavity mode excited to state
). Three different values of the mean photon number ||* are shown, the vertical scales being
different for the three cases, The uncertainties in field values are indicated by the vertical widths
2AE of the sine waves. These widths can also be regarded as combinations of the amplitude
uncertainty associated with An and the phase uncertainty associated with A cos ¢,




Additional properties of single mode coherent state --

Consider the expectation values of the number operator and 1its square:

Nko = ali-aaka

(o[ No | ) =|ef (| NigNig [c)= la] +]]

(¢a[Nis [e, )

Fractional uncertainty in the number of photons for the coherent state:

\/<Ca N, Ny, |e)=[(c. [Ny, |Ca>‘2 _ \/|0‘|4 +|O‘|2 _|0‘|4 _ b1
(¢a [N |€. ) o of A

when o = Ae"

2 2
=|a

Square of the variance: <ca |NkGNkG |ca > —




Interpretation of a single mode coherent state
o0 n —|C¥|2/2
94
c )= n) based on a single mode n — n

n=0

The probability of finding n photons in this state 1s given by:

(nle.)

2 af

(04 .. ) . :
— ‘ ' This 1s the form of a Poisson distribution
n!

2

2
for a mean value of ‘a‘ .

For o = Ae", the probability of finding the eigenstate with
eigenstate ‘n> 1S given by

2n _|A]?
2 ‘A e||

L =‘<n‘ca> n!



Poisson distributions
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Focusing on a particular pure EM mode with wavenumber k and frequency @, :

For a coherent state ¢, with @ = Ae'", the probability

of finding the eigenstate with photon number ‘n} 1s given by

2n A
2 ‘A e||

Coherent __
B =(nle.)

n!

For "a black body system" at temperature 7', the probability

of finding the eigenstate with photon number ‘n> 1s given by

Bthermal (T) _ e—nha)/kBT (1 . e—ha)/kBT)



Thermal distributions:

PThermal (T) _ e—nha)/kBT (1 _ e—ha)/kBT )

ho
—nl’ -I .
=e l-e with I = ——
0.9 ( ) k,T
0.8 I'=3
0.7—_
_0.6-

& 0.5 =2
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Beyond the coherent state — There are problematic issues
with the coherent state basis stemming from the fact that it is
mathematically “over complete”.

Following Berman and Malinovsky we explore the notion of
“gquadrature operators” for the radiation Hamiltonian.

Recall that for a given radiation more ko, the fields are expressed




In the following, we will drop the indication of the mode parameters ko

Define the Hermitian operators
1 ; 1 ;
a=—(a+a a,=—|a—a
=5 (a+a’) ,=5;(a=d')

o | ~.

Commutation relations:  |[a,a,]=

Variance relationship: (Aq, )(Aa, ) > i

. L 1
Recall the general relationship: [A,B]=iC 1mmplies AAAB ZEKC >‘



For pure radiation eigenstates ‘n> -

Expectation values and variances of a, and a,
(n]a,|n)=0=(n|a,|n)

(i 1) =3 n+3 | =l
(Aq,)(Aa,) =%(n+%)

—> Pure radiation eigenstate 1s not a minimum uncertainty state

unless n =0.



00 n —|0£|2/2

For coherent states with ‘Ca> = Z @ °

2

Expectation values and variances of a, and a,

CX-l—O[* OZ—CZ*
2 <Ca‘a2‘ca>: 2l
1

(e.]alle.)=(c.|ae.) =5 =(nla@|n)~{e,|a;|c.)

—> Coherent state 1s a minimum uncertainty state

<Ca‘a1‘ca>:



Is it possible to do better than the coherent state?

Change of notation --

7o\ 7o\

Q =2a, P
A=

2a,



Review of equations related to quantized EM fields --
Recall that we can write the EM Hamiltonian for a single mode @, = o ——

rad

H :%ha)(aTa+aaT)=ha)£aTa+%j where [a,aqzl

Field eigenstates a'a | n> =n | n>
For further analysis, it 1s convenient to define "Quadrature operators" which are

unitless and Hermitian:

N (41 D A 51_-; Notethat some texts
O=(a'+a) and :_l(a ) :[Q’P] g define Q and P with
a

Note that:  H = _(Q2 + 132) a prefactor of %.
2

From the Heisenberg uncertainty ideas applied to the standard deviations:
AQAP > 1

Also note that <n Q P

n>=0=<n

)



For the coherent state:

2)=e ”Z )

AD, =\/< 2 z>—‘</1

— AQlAIS =

2 A

0 =1=AP,

4

In this sense, the coherent state represents the minimum
uncertainty process.



Allowed variance products
3-

Range of values
allowed by quantum
mechanics

AP

o

AQ
Coherent state
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_ “Squeezed”
Allowed variar

state with
3 larger AP but
smaller 4Q.
2_

Range of values
allowed by quantu
mechanics

AP

“Squeezed”
state with
smaller AP but

1 2 3 larger4a.
AQ

Coherent state
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In terms of the eigenstates of the EM Hamiltonian:

ny = ha)(n+ lj\ n)

.- oo

= AQ AP =2n+1>1

H

rad

=\2n+1=AP

)

(n]0

In terms of coherent states: --



For the coherent state:

2)=e ”Z )

AD, =\/< 2 z>—‘</1

— AQlAIS =

2 A

0 =1=AP,

4

In this sense, the coherent state represents the minimum
uncertainty process.



How can we transform the quadrature functions to
reduce the variances of AQ or AP?

Following Mandel and Wolf, we introduce the squeeze operator

S(z) = exp (%(z*&z —za"” )j

= 1+%(z*&2 —Z&T2)+%(%(z*&2 —za"™? )jz +%(%(z*&2 —za"™ )T .....

. A Aot
Note that S(z) 1s a unitary operator S(z) (S (z)) =1

Let z = re'



Squeeze operator with z = re’
1

S(z) = exp (—(z*dz —za'’ )j z=re"”

2

121(2) = LSA’(Z)cTK(‘SA’(Z))Jr and A (z) = SA’(Z)&T (LSA’(Z))T

. . ‘22& Z‘ch?fr

A(z)=a+za" + + +....
2! 3!

— A(z) = 4 cosh r+a'esinh r

A"(z)=a e ’sinh r+a'cosh r

Inverting these relations --
a = A(z)cosh r— A" (z)e"sinh r

a" = A" (z)cosh r — A(z)e “sinh r

(not totally trivial...)



Now recall the "Quadrature operators"

N N

QE(aT+a) and Psi(aT—a) :[Q,ﬁ]:
From the Heisenberg uncertainty i1deas -- AQAﬁ > 1

More generally, we can use the altered operators --

Qﬁ_(ae +ae lﬁ) and f’ﬂ z( fe'f — _’ﬂ)

Note that [Q,, P,]1=2i which implies AQ,AP, >1

We are seeking a "squeezed" states for which AQﬂ <1

. >ES(Z)‘/1>

Evaluating the variance AQ[), for this squeezed coherent state --

Consider a "squeezed" coherent



Evaluating the variance --

<Z,ﬂ. Qﬂ Z,/1> = <Z,/1 a'e’? +ae™” Z,/1>
= A(z)cosh r— AT (z)e"sinh r

"= A" (z)cosh r — A(z)e sinh r

a
a

When the dust clears -- (Details in Mandel and Wolf and other references)
(2,4|0)|2,4) = (ﬂ*cosh r—Ae”’sinh r)eiﬂ + (ﬂ,cosh r—A e“sinh r)e"ﬂ

After more dust --

(A9, )2

2

Z,/1> = <Z,/1 (Qﬂ) Z,/1>— <Z,/1 Qﬂ Z,/1>
=cosh(2r)—sinh(2r)cos(0—-24)

<Z, A




2

<Z,ﬂ,

Z,i> :<Z,i (Qﬂ) Z,/1>— <Z,/1 Qﬂ Z,/1>
=cosh(2r)—sinh(2r) cos(6 -2 )

(40,)

T
6_
5
4-
3 r=0.5
7
1- r=0.25

0 20 40 60 80 100 120 140 160 180
028
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Searching for the best squeeze parameters

(AQAﬁ) Z,Z,> :<Z,i (QAﬂ) Z,l>— <Z,ﬂ, Qﬂ Z,/1>
=cosh(2r) —sinh(2r)cos (6? — 2,8)

2

<Z, A

For each r, the smallest result is obtained when =62
A 2
<Z,l‘(AQﬁ) z,A) = cosh(2r) —sinh(2r) = exp(-2r) <1

It can also be shown that for the same choice of parameters

(=.2](a5,)

z,A) = cosh(2r) + sinh(2r) = exp(2r) 2 1

=>» Despite the constraints of the uncertainty principle, it is
possible to improve the measurement of one of the two non-
commuting processes.



Experimental evidence

VOLUME 57, NUMBER 20 PHYSICAL REVIEW LETTERS 17 NOVEMBER 1986

Generation of Squeezed States by Parametric Down Conversion

Ling-An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu

Department of Physics, University of Texas at Austin, Austin, Texas 78712
(Received 11 September 1986)

Squeezed states of the electromagnetic field are generated by degenerate parametric down conversion
in an optical cavity. Noise reductions greater than 50% relative to the vacuum noise level are observed
in a balanced homodyne detector. A quantitative comparison with theory suggests that the observed
squeezing results from a field that in the absence of linear attenuation would be squeezed by greater
then tenfold.

Coherent state

(a)

-+ -

5,59

h Squeezed state
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(b)

J | T/ | T
2!0"_
v(6)|
Jo ] S SN NP R S WP AN 1 | § I SN W g
|_
O ...... bressanassannan [T Ii‘}{-; R LRI
8, G, 8,42 8, g+
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Ring Laser

o

|

I
L1 X
Nd: YAG i
\ 8.0
1
Polarizer /] - /"'h
0.53 um v L.O6um
YY) M Local
. . X Oscillator
Opn?ul Parametric || MgO:LiNbO4
Oscillator i .
L om Filter
frrrprss LO6 um
1.06 um ™ photodiode B
Signal — )
L/
Polarizer

Photodiode AV

Spectrum
Analyzer

FIG. 2. Diagram of the principal elements of the apparatus
for squeezed-state generation by degenerate parametric down

conversion.

04/26/2024
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