
1/22/2025 PHY 712  Spring 2025 -- Lecture 4 1

PHY 712 Electrodynamics
10-10:50 AM  in Olin 103

Class notes for Lecture 4:
Reading: Chapter 1 in JDJ

1. Review of electrostatics with one-
dimensional examples

2. Poisson and Laplace Equations

3. Green’s Theorem and its use in 
electrostatics

Presenter Notes
Presentation Notes
In this lecture, we will return to the materials presented in our textbook.     Some of the ideas were presented in PHY 711.
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in Olin 101
             at 4 PM
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Presenter Notes
Presentation Notes
Updated schedule.   Note new homework assignment which follows from today’s lecture.
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Poisson and Laplace Equations
We are concerned with finding solutions to the Poisson 
equation:

and the Laplace equation:

The Laplace equation is the “homogeneous” version of the 
Poisson equation.  The Green's theorem allows us to 
determine the electrostatic potential  from volume and surface 
integrals:
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Presenter Notes
Presentation Notes
Here we start our systematic derivations of solution of the electrostatic equation for a potential with a given charge source and the associated homogeneous equation.
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Poisson equation -- continued
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Presenter Notes
Presentation Notes
What we discussed last week is still true for isolated charges.   Now we consider the case where the charges are within a volume V whose surface may have some imposed restrictions (boundary conditions).
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General comments on Green’s theorem
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This general form can be used in 1, 2, or 3 dimensions.   In 
general, the Green's function must be constructed to satisfy 
the appropriate (Dirichlet or Neumann) boundary conditions.  
Alternatively, or in addition, boundary conditions can be 
adjusted using the fact that for any solution to the Poisson 
equation,                 other solutions may be generated by use 
of solutions of the Laplace equation
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Presenter Notes
Presentation Notes
Comment about how the boundary conditions may or may not work.   Note that it is important to not over specify the boundary conditions..
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Physics Today 56(12), 41 (2003); https://doi.org/10.1063/1.1650227

https://doi.org/10.1063/1.1650227
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“Derivation” of  Green’s Theorem
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Presenter Notes
Presentation Notes
Here we derive the equations stated on the previous slides.
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“Derivation” of  Green’s Theorem
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Presenter Notes
Presentation Notes
Derivation continued.



1/22/2025 PHY 712  Spring 2025 -- Lecture 4 12

0a d ( )n d
dx
Φ

∞ =

Presenter Notes
Presentation Notes
Simple one-dimensional example of a particular charge distribution.
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Laplace
Poisson
Poisson
Laplace

Presenter Notes
Presentation Notes
Resultant potential and electric field.
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Presenter Notes
Presentation Notes
Graph of results for this example
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Comment about the example and solution

This particular example is one that is used to model 
semiconductor junctions where the charge density is 
controlled by introducing charged impurities near
the junction. 

The solution of the Poisson equation for this case can 
be determined by piecewise solution within each of the 
four regions.   Alternatively, from Green's theorem in 
one-dimension, one can evaluate the expression --
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Presenter Notes
Presentation Notes
Comment and generalization.
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Notes on the one-dimensional Green’s function
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Presenter Notes
Presentation Notes
Some details.
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Construction of a Green’s function in one dimension
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Presenter Notes
Presentation Notes
Details continued for one dimensional Poisson equation.
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Summary 
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Presenter Notes
Presentation Notes
Summary for one dimensional Poisson equation.
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One dimensional Green’s function in practice
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This expression gives the same result as previously 
obtained for the example ρ(x) and more generally is 
appropriate  for any neutral charge distribution. 

Presenter Notes
Presentation Notes
Some general comments.
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Question -- How do we know which one of x and x' 
is the x< term?  
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Question – what happened to the boundary terms?

Full expression in this case --
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Presenter Notes
Presentation Notes
Now we will discuss another approach to analyzing Green’s functions based on expansion in terms of a complete set of orthogonal functions.
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Presenter Notes
Presentation Notes
Some details for orthogonal function expansion method.
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Presenter Notes
Presentation Notes
Application to our example.
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Constant shift to
allow (0) 0.Φ =

Presenter Notes
Presentation Notes
Graph of potential (green) and expansion for a few terms.    Note that it was necessary to shift the potential by a constant.
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