PHY 712 Electrodynamics
10-10:50 AM MWF in Olin 103
Class notes for Lecture 5:

Reading: Chapter 1 -3 in JDJ
Electrostatic potentials

1. One, two, and three dimensions
(Cartesian coordinates)

2. Mean value theorem for the
electrostatic potential
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Presenter Notes
Presentation Notes
In this lecture, we will continue to develop solution methods for solving electrostatic problems.


Course schedule for Spring 2025

(Preliminary schedule -- subject to frequent adjustment.)

Lecture date JDJ Reading Topic HW  Due date

Mon: 01/13/2025 |Chap. 1 & Appen. |Introduction, units and Poisson equation #1 101/15/2025
Wed: 01/15/2025 |Chap. 1 Electrostatic energy calculations #2 101/17/2025
Fri: 01/17/2025  (Chap. 1 Electrostatic energy calculations #3 01/22/2025
Mon: 01/20/2025 No Class Martin Luther King Jr. Holiday

4 \Wed: 01/22/2025 Chap. 1 Electrostatic potentials and fields #4 101/24/2025
Fri: 01/24/2025  (Chap. 1-3 Poisson's equation in multiple dimensions

6 Mon: 01/27/2025 Chap.1-3 Brief infroduction to numerical methods

01/24/2025
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Presenter Notes
Presentation Notes
Updated schedule


Poisson Equation

qu)P(r) _ p(r)
&

Solution to Poisson equation using Green's function G(r,r'):

j d’r' p(rG(r,r') +

blr) = 47e,

1
4z s
where V'G(r,r")=—47d(r—r')

d’r '[G(r r')V'oax")—-ox"V'G(r,r )] I


Presenter Notes
Presentation Notes
Review of the general methods for solving the Poisson equation in various dimensions and geometries.


Last time, we suggested for a potential defined within the range —a<x<a:

2
a | n
=0 ( 2n+1 ?T)

2a

n=0 n=1 n=2 n=3

Not obviously a great choice, but we will see how
it can work.
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~ General procedure for constructing Green’s function for one-
dimensional system using 2 independent solutions of the
homogeneous equations

Consider two independent solutions to the homogeneous equation
V2§(x) = 0

where i =1or 2. Let

Gx,x') = %ﬁl (), (x).

This notation means that x_ should be taken as the

smaller of x and x' and x_ should be taken as the larger.

= A (3) - g 22

"Wronskian":

Beautiful method; but only works in one dimension.


Presenter Notes
Presentation Notes
Some details


Orthogonal function expansions and Green’s functions

Suppose we have a “complete” set of orthogonal functions {u,(z)} defined in the

interval 7 < x < x5 such that

A (@)t (2) d = O

1
We can show that the completeness of this functions implies that

>

Z Uy (2) Uy (2) = 6(x — 2).

n=1

This relation allows us to use these functions to represent a Green’s function for our

system. For the 1-dimensional Poisson equation, the Green’s function satisfies

82 ! !
ﬁG(m.}m ) = —4nd(x — x').
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Presenter Notes
Presentation Notes
Review of orthogonal function expansions.


Orthogonal function expansion -- continued

Suppose the orthogonal functions satisfy an eigenvalue equation:
d2

——u,(x) =—a,u,(X)

dx’

where the functions u (x) also satisfy the appropriate boundary

conditions, then we can construct the Green's function:
u (x)u (x
G(x,x") = 47[2 . ) . )

Check:

(—at0, (), ()

(04

n

& Gy =axy =473, (), ()
X n n

=—476(x—Xx")


Presenter Notes
Presentation Notes
Construction of Green’s function for one dimensional case.


Example

For example, consider an example for the interval —a<x<a:

r

0 for x<—a

-p, for —a<x<0

X) =5
P +p, for O0<x<a

0 for x> a

.

We want to solve the Poisson equation with boundary condition
®(—a)=0and d®(—a)/dx=0. We may choose

1 . ([2n+1]7zx

u,(x)=,[—sin

a

5 j and the corresponding Green's function
a

2n+1]zx ) . ([2n+1]zx
47 2 M 24 SN y Note that this is a
G(x,x")= Z convenient choice, but not

5 :
d n=0 [2n+1]7 necessarily compatible
20 with the boundary values.
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Presenter Notes
Presentation Notes
Reviewing our “favorite” example.


Example -- continued
This form of the one-dimensional Green's function only allows us to find a

solution to the Poisson equation within the interval —a < x < a from

1
D(x) =
(%) dre

: ([2n+1]7zxj
) _ sin 5 |
= () =L 16 @ _J, |

€ = (2n+1rx) 2

choosing C, so that ®(—a) =0.

e

0 for x <—a
&(era)z for —a<x<0
2¢,

Exact result: ®(x) =1 _&(x —a)’ + £ic for 0<x<a

2¢, )
&az for x>a



Presenter Notes
Presentation Notes
Some details.


Some details --

(0 for x < —a . ([2n+1] ) . ([271—1—1] j
w Sin Sin
—p, for —a<x<0 Gx)=2Z Z 2a 24 J,

n=0 2 1 ?
+p, for O<x<a ([n;]ﬂj

[2n+ l]ﬂxj [2n+1]7x j

sin
Po 2a
2116 : S(x,N)=16

€ nzz(; ([2n+ 1]7[)3 ( )= nz(; [2n+ l]7r)3

p(x) =+

\

0 for x> a
sin(

0 2 4 6 8 10

-0.498 -

-0.500- ——

-0.502-

S(x=-a,N) -0.504-
-0.506-

-0.508-

-0.510-

-0.512-

-0.514-

-0.516 .
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Example -- continued

. ([2n+1]7zx
D) - 2 162-0181“ 20 ), 1| Needed for
e, | = (2n+lz) 2| gboundary
values.

'

Note that for this example,

i we have previously shown
that G(x,x")=4rx_

* works very well.
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Presenter Notes
Presentation Notes
Summary.


Orthogonal function expansions in 2 and 3 dimensions —
for cartesian coordinates:

FD(r)  FOr) ()

VO(r) =
(r)= ox’ oy” oz

=—p(r)/ ¢,

Let {u,(x)}, {v,(»)}, {w,(2)} denote complete orthogonal

function sets in the x, y, and z dimensions, respectively. The

Green's function construction becomes:

G(x,x\y,yz,z)=4n ) w, (O, (x)w, Vv, VI, (2)w, (2"
Imn al + IBm + yn

b

where

j_uz(x)_ azuz(x) d_v (y)_ ﬂmvm(y) and d_w (Z)——]/an(Z)
X y dz’

(See Eq. 3.167 in Jackson for example.)


Presenter Notes
Presentation Notes
Extension of the ideas to multiple dimensions.


e Details of a two-dimensional example --

Example:

b—<

—

\ J

la
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=d(a,y)=d(x,0)=d(x,b)=0

0’ D(r) 82®(r)

V2®(r) = —,0(1') / €, -
ox” @y
Glx,x',y,y) =472 (D) <;>: ﬁ(y)v ()
d’ 4’

where —u,(x) =—a,u,(x), —V 2 (V)==0,v,, (V)
dx* dy’
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Presenter Notes
Presentation Notes
Analyzing in detail the two dimensional case.


Two dimensional example continued --

a

; (x) = gSin(lﬂ—x) v, (¥)= zsin(mﬂy ] with a;=(
a a b b

G(x,x',y,y")=4zy () (;C '):n};y)vm ()

¥4

a

o

I n

b

|

mﬂy'j

mm

b

] (Zﬂxj : (lﬂx') : (mﬂy
sin| —— |[sin sin

o )3
a b
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Presenter Notes
Presentation Notes
Two dimensional case, using orthogonal functions in both x and y dimensions.


.

Example two-dimensional system continued -- Tywo

dimensional box
with sides a and

b with boundary
conditions:
— D(0,y)=D(a,y)=
‘ | d(x,0)=d(x,b)=0
I'a
O(r) = I d’r' p(r"G(r,r'") +
Ty K this t 0
Don’t know this term’ ' now this term=
1 2
o d r'[G(r,r)V'O(r) - d(rV'G(r,r")] F'
T

=>In this case it is prudent to design G(r,r’) to

vanishes on boundary and the surface integral is
trivial.
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Presenter Notes
Presentation Notes
Specific example.


@}he integral that 1s needed 1n this case:

D(r) = j d’r' p(r"G(r,r")

47e,

For example:

Irx | . (lzx") . (mry mry'
16 sin g S1n g S1n 3 sin b
G(x,x',y,y)=—7 2 2
ﬂab Im l m
I _|_ -
) (5)
Note that in this case, the eigenfunctions are compatible with
the given boundary values.

Example charge densities:

Example #1:  p(x,y)=p, sm( ﬂxjsm( ﬂl;y j
a

Example #2:  p(x,y) = p,
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Presenter Notes
Presentation Notes
Two examples.


X Ty

Example 1 -- p(x,y)= p,sin (7J sin 7

for 0<x<a 0Zy<bh

. (172')6 (lxx") . (mxy) . (mry'
sin| —— |[sin sin sin
16 a a b b

G(X,X',y,y'):% ] 2 - 2
BRS
sin(mjsin(?j
D, y) =0t
(=4[5
a b

0 0’ Oy . (7x) . (7my
Check -- ~+— |D(x,y) =——sin| — [sin| ——
ox” 0Oy &, a b




Combined orthogonal function expansion and
homogeneous solution construction of Green’s function
in 2 and 3 dimensions.
An alternative method of finding Green's functions for a second order
ordinary differential equations (in 1 dimension) is based on a product of
two independent solutions of the homogeneous equation, ¢ (x) and ¢, (x):

4r
aé 4 _
’y 0~ ¢

where x_ denotes the smaller of x and x'.

G(x,x')=K¢1(x<)¢2(x>), where K = %9

dx

For the two and three dimensional cases, we can use this
technique in one of the dimensions in order to reduce the
number of summation terms. These ideas are discussed in
Section 3.11 of Jackson.


Presenter Notes
Presentation Notes
Now consider using orthogonal function expansion in the x dimension and the homogeneous solution construction in the y dimension.


= Green’s function construction -- continued

For the two dimensional case, for example, we can assume that the

Green's function can be written 1n the form:

dZ
G,y = Xt (3w, (x)g, (,y") where 1, (x) = =a,1,(x

The y dependence of this equation will have the required

2

behavior, if we choose: {—an + ?} g (y,y)=—4m6(y-y),
A

which 1n turn can be expressed in terms of the two independent

solutions v, (¥) and v, (y) of the homogeneous equation:

d> d?
_2_an an(y):()’ _2_an vnz(y):O
dy dy

dv dv

m )

and the Wronskian constant: K =

n,

dy " ody


Presenter Notes
Presentation Notes
Some details.


O? , ,
{—Ofn + —Jgn(y,y )=—4m0(y—y),

oy
. 4r
g,»y)=—v, (v, ()
Kn
dZ
where: {—2 — an}vn, (y)=0,
dy !
dv, av,
and K =—v_-v, 2
dy ' dy

For example, choose v, (y) = sinh(\/OTn y) and v, (y) = sinh(\/OTH (b—y))

where K = \/07,1 sinh(\/OTH D)

using the 1dentity: cosh(7)sinh(s) + sinh(7)cosh(s) = sinh(7 + s)


Presenter Notes
Presentation Notes
More details.


Example:

b—<

—

\ J

la
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=d(a,y)=d(x,0)=d(x,b)=0

D(r) = —j d’r' p(r"G(r,r') +
Dor11t kn82w'th|s term' ' Know this teAr'm
1 ds d-r [G(r rYV'o(r")-or")\V'G(r,r )]

G(x,x',y,y") = Zu (x)u, (X)—an (Y, (3.)-
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Presenter Notes
Presentation Notes
More details.


.

Example:

b —

—

la
Two dimensional box with sides a and b with boundary
conditions: @(0,y)=d(a,y)=d(x,0)=d(x,b)=0

For this type of problem, it is necessary to construct G(x,x',y, ")

so that 1t vanishes on the boundary:
G(x,x,y,0)=G(x,x,y,b) =G(x,0,y,y)=G(x,a,y,y")=0
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Presenter Notes
Presentation Notes
Checking boundary values.


G(x,x',y,y") = Zu (xX)u, (X)—vnl (Y, (3.)-

d_zu (x)=—a u,(x) where u (0)=u(a)=0

dx?
2 . ( nrx nix ?
=>u (x)=,|—sin| — a, =|—
a a a

{% - (%j }Vn, (»)=0
v, () =sinh (ﬂ yj v, (7) = smh(

K, = ﬂsmh(nﬂbj

a a

a

(5-2))


Presenter Notes
Presentation Notes
More details.


= Green’s function construction -- continued

G(x,x',y,y") = Zu (Ou, (XK, (v v, (1.).

For example, a Green's functlon for a two-dimensional rectangular system

with 0 < x < a and 0 < y < b, which vanishes on the rectangular boundaries:

. sin(mjsin(nﬂx jsinh(mzy< jsinh(m(b —y>)j
a a a a

G(x,x",y,»") =8 nh
n=l smh( j

a

la
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Presenter Notes
Presentation Notes
Resultant effective Green’s function for this case.


la

D(r) = d3r p(r"G(r,r") + =0

4725

(for our case)

L G ey )
47 9S

_ sin M2 sin| 2 sinh| 2%Y< |sinh (b ¥.)
' ' a a a
G(xaxayay)ZSZ n7z'b
= nsinh| ——
a
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Presenter Notes
Presentation Notes
Checking boundary values.


.

sin(@j sin(nﬂx jsinh rys jsinh (E(b —y>)j

' ' a a a a

G(xaxayay)ZSZ n7Z'b )
n=l1 nsinh —j

Example:  p(x,y) = p, sm(ﬂxjsin(zy j
a

D(r) = o J. d’r' p(r"G(r,r"

In this example, only n=1 contributes because

j dx' sm(ﬂx jsin(nﬂx j:g5ln
a a 2

D(x,y) = 8P, ¢ sm(ﬂxjx
47e, 2sinh(7b / a) a

(sinh(ﬂ(b — y)jj.dy'sin(ﬂ—y'j sinh(ﬂy'j + smh(
) b a

a

(2 o

(somewhat painful solution to example problem)

n(b-y"
a

)


Presenter Notes
Presentation Notes
Application to previously discussed examples   (also your homework examples).


“Another example: p(x,y)=p, Tfor0<x<agand0=<y<b

D(r) = i de3r' o(r"G(r,r")

@jsm(”’” jsinh ) jsinh (ﬂ(b - y>)j
a

. sin(
Again --  G(x.x\y,y)=8)
n=1

a a a
: nh
nsinh —j
, 0 m=even a
jadx'sin(nﬂx j =< 2a
0 a — n=odd
ni
O(x,y) =

— ) ' b o
a Sinh(ijdy'Sinh(ﬂj+Sinh(mzyjjdy'sinh(mz(b y )j
bj a 0 a a g a

a a a

. [ nmx
= 16p,a” Z Sm(dj [sinh(n—ﬂbj—sinh(@j—sinh(—nﬂ(b_y)jj

= A complicated expression that converges rapidly.


Presenter Notes
Presentation Notes
Application to previously discussed examples   (also your homework examples).


Note that up to now, we have been considering Cartesian
coordinates in 1, 2, and 3 dimensions. We will need additional
considerations for systems that are more naturally described in
curvilinear coordinates.

Cylindrical coordinates: ®@(r, @, z)

1o( O 1 ¢ 0o
VO, p,z)=| — + + O(7, @,
(r:0.2) (r or (r 87/) r* 0’ Gzzj (r:9.2)

Spherical polar coordinates: ®(r, 8, )
1 0 0 1 1 0o 0 1 &
VO(r,0,0)=| ——| r’ + sinfd— |+ (7,0,
(r:6:9) (rz ar( Orj rz(sinﬁ ae( aej sin2ea¢2n (r:6,9)

=» Additional eigenfunction expansions will be useful




A useful theorem for electrostatics

The mean value theorem (Problem 1.10 in Jackson)

The “mean value theorem™ value theorem (problem 1.10 of your textbook) states that the
value of ®(r) at the arbitrary (charge-free) point r is equal to the average of ®(r’) over
the surface of any sphere centered on the point r (see Jackson problem #1.10). One way
to prove this theorem is the following. Consider a point r’ = r + u, where u will
describe a sphere of radius R about the fixed point r. We can make a Taylor series

expansion of the electrostatic potential ®(r’) about the fixed point r:

®(r+u) = tI)(r)+u-V®(r)—|-21!(u-V)EtI)(r)+1(u-V)gf@(r)—l—i!(us)'q@(r)—l—- ce

3!
(1)
According to the premise of the theorem, we want to integrate both sides of the equation

1 over a sphere of radius R in the variable u:

2 +1
/ dS, = R? f do,, / d cos(,,). (2)
sphere 0 ~1
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Presenter Notes
Presentation Notes
Changing gears slightly --      discussion of the mean value theorem for electrostatics.


Mean value theorem - continued

We note that
2 +1
sz dqbuf dcos(0,)1 = A7 R?,
0 —1

27 +1
R? / d(ﬁu/- dcos(fy)u -V =0,
0 —1

A7 R*

v?
3 ’

2w +1
R? / depu, / dcos(f,)(u-V)? =
0 —1

2 +1
RZ/ d.:;suf dcos(0,)(u-V)* =0,
0 -1

and

47w R® ot

2w +1
sz déuf dcos(fy)(u-V)* =
0 —1

Since V2®(r) = 0, the only non-zero term of the average is thus the first term:

2 +1
R? / dn / d cos(0,)®(r + u) = 4rR?®(r),
]

-1

or
1

2 +1 1
RQ/ do / dcos(0,)P(r +u) = / dS,®(r + u).
47 R? 0 ) (6u)2( ) 47 R? Jsphere « ™ )
Since this result is independent of the radius R, we see that we have the theorem.
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Presenter Notes
Presentation Notes
Some details


Summary:. Mean value theorem

D(r) =

; szR dQ O(r +u)
7T

¢

Next week we will take a short digression to discuss two
different “numerical” methods for solving the Poisson
equation, following your textbook.


Presenter Notes
Presentation Notes
Summary of results.
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