
Electrodynamics – PHY712

Lecture 13 – magnetostatic examples

Reference: Chap. 5, Sec. 5.6-5.7 in J. D. Jackson’s textbook.

Calculation of the vector potential for a confined current density

If the current density J(r) is confined in space, the vector potential in the Coulomb
gauge can be calculated from

A(r) =
µ0

4π

∫
d3r′

J(r′)

|r− r′|
. (1)
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Simple example of current density from a rotating charged sphere

Consider the following example corresponding to a rotating charged sphere of radius a,
with ρ0 denoting the uniform charge density within the sphere and ω denoting the
angular rotation of the sphere:

J(r′) =

 ρ0ω × r′ for r′ ≤ a

0 otherwise
(2)

In order to evaluate the vector potential (1) for this problem, we can make use of the
expansion:

1

|r− r′|
=

∑
lm

4π

2l + 1

rl<
rl+1
>

Ylm(r̂)Y ∗
lm(r̂′). (3)

Noting that

r′ = r′
√

4π

3

(
Y1−1(r̂′)

x̂+ iŷ√
2

+ Y11(r̂′)
−x̂+ iŷ√

2
+ Y10(r̂′)ẑ

)
, (4)

we see that the angular integral in Eq. (1) can be simplified with the use of the identity:∫
dΩ′

∑
lm

Ylm(r̂)Y ∗
lm(r̂′) r′ =

r′

r
r ≡ r′ r̂ . (5)
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Simple example of current density from a rotating charged sphere – continued

Therefore the vector potential for this system is:

A(r) =
µ0ρ0ω × r

3r

∫ a

0

dr′ r′
3 r<
r2>
, (6)

which can be evaluated as:

A(r) =


µ0ρ0
3

ω × r

(
a2

2
− 3r2

10

)
for r ≤ a

µ0ρ0
3

ω × r
a5

5r3
for r ≥ a

. (7)

B(r) = ∇×A(r) =


µ0ρ0
3

[
ω

(
a2 − 6

5
r2
)
+

3

5
r(ω · r)

]
for r ≤ a

µ0ρ0
3

[
−ω

a5

5r3
+

3a5

5r5
r(ω · r)

]
for r ≥ a

. (8)
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Another example – current associated with an electron in a spherical atom

In this case, we assume that the current density is due to an electron in a bound atomic
state with quantum numbers |nlml⟩, as described by a wavefunction ψnlml

(r), where
the azimuthal quantum number ml is associated with a factor of the form eimlϕ. For
such a wavefunction the quantum mechanical current density operator can be evaluated:

J(r) =
−eℏ
2mei

(
ψ∗
nlml

∇ψnlml
− ψnlml

∇ψ∗
nlml

)
. (9)

Since the only complex part of this wavefunction is associated with the azimuthal
quantum number, this can be written:

J(r) =
−eℏ

2meir sin θ

(
ψ∗
nlml

∂

∂ϕ
ψnlml

− ψnlml

∂

∂ϕ
ψ∗
nlml

)
ϕ̂ =

−eℏmlϕ̂

mer sin θ
|ψnlml

|2 .

(10)

where me denotes the electron mass and e denotes the magnitude of the electron charge.
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Current associated with an electron in a spherical atom – continued

J(r) =
−eℏmlϕ̂

mer sin θ
|ψnlml

(r)|2 =
−eℏmlẑ× r

mer2 sin
2 θ

|ψnlml
(r)|2 . (11)

A(r) =
µ0

4π

(
−eℏml

me

)∫
d3r′

ẑ× r′

|r− r′|
|ψnlml

(r′)|2

r′2 sin2 θ′
. (12)

Note that for some atomic wavefunctions, ψnlml
(r′), the evaluation of the vector

potential A(r) simplifies.

PHY 712 Lecture 13 – 2/12/2025
5



Current associated with an electron in a spherical atom – continued

For example, consider the |nlm = 211⟩ state of a H atom:

ψ211(r) = −
√

1

64πa3
r

a
e−r/(2a) sin θeiϕ, (13)

and

J(r′) =
−eℏ

64meπa5
e−r′/a ẑ× r′, (14)

where a here denotes the Bohr radius. Using arguments similar to those above, we find
that

A(r) =
−eℏµ0ẑ× r

192meπa5r

∫ ∞

0

dr′ r′
3
e−r′/a r<

r2>
. (15)

This expression can be integrated to give:

A(r) =
−eℏµ0ẑ× r

8meπr3

[
1− e−r/a

(
1 +

r

a
+

r2

2a2
+

r3

8a3

)]
. (16)
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Current associated with an electron in a spherical atom – continued

Previous result:

A(r) =
−eℏµ0ẑ× r

8meπr3

[
1− e−r/a

(
1 +

r

a
+

r2

2a2
+

r3

8a3

)]
. (17)

Note that for r → ∞, in this case, r >> a:

A(r) =
−eℏµ0ẑ× r

8meπr3
=
µ0

4π

(
− eℏ
2me

)
ẑ× r

r3
=
µ0

4π

m× r

r3
, (18)

where

m =

(
− eℏ
2me

)
ẑ. (19)

More generally, the magnetic dipole moment is given by:

m =
1

2

∫
d3r′ r′ × J(r′). (20)

PHY 712 Lecture 13 – 2/12/2025
7



Current associated with an electron in a spherical atom – continued

Note that the general form of the current density for a spherical atom is given by:

J(r) =
−eℏmlϕ̂

mer sin θ
|ψnlml

(r)|2 =
−eℏml

me

ẑ× r̂

r sin2 θ
|ψnlml

(r)|2 . (21)

Using the general form of the magnetic dipole moment, for an electronic wavefunction
of a spherical atom,

m =
1

2

∫
d3r′ r′ × J(r′) = −eℏml

2me
ẑ

∫
d3r′ |ψnlml

(r′)|2 = − eℏ
2me

mlẑ. (22)

Note that this ”orbital magnetic moment” characterizes the current density of the
electron for r >> a.

PHY 712 Lecture 13 – 2/12/2025
8



Systematic multipole analysis of vector potential for a general confined current
density J(r) (assuming ∇ · J(r) = 0.

A(r) =
µ0

4π

∫
d3r′

J(r′)

|r− r′|
. (23)

For field point r outside of extent of current density:

1

|r− r′|
=

1

r
+

r · r′

r3
· · · . (24)

A(r) ≈ µ0

4π

(
1

r

∫
d3r′J(r′) +

r

r3
·
∫
d3r′r′J(r′) . . . .

)
(25)

Note that ∫
d3r′J(r′) = 0 (26)

r ·
∫
d3r′r′J(r′) = −1

2
r×

∫
d3r′r′ × J(r′) ≡ m× r. (27)
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Magnetic dipolar field

The magnetic dipole moment is defined by

m =
1

2

∫
d3r′r′ × J(r′), (28)

with the corresponding potential

Am(r) =
µ0

4π

m× r̂

r2
, (29)

and magnetostatic field

Bm(r) = ∇×Am(r) =
µ0

4π

{
3r̂(m · r̂)−m

r3
+

8π

3
mδ3(r)

}
. (30)
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Magnetic dipolar field – continued

Some details:

∇× (sV) = ∇s×V + s∇×V. (31)

∇× (V1 ×V2) = V1(∇ ·V2)−V2(∇ ·V1) + (V2 · ∇)V1 − (V1 · ∇)V2. (32)

For r > 0:

∇×
(
m× r

r3

)
=

3r(m · r)− r2m

r5
. (33)
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Justification for the δ function contribution at the origin of the magnetic dipole

Note: This derivation is very similar to the analogous electrostatic case.

The evaluation of the field at the origin of the dipole is poorly defined, but we make the
following approximation.

B(r ≈ 0) ≈
(∫

sphere

B(r)d3r

)
δ3(r). (34)

First we note that ∫
r≤R

B(r)d3r = R2

∫
r=R

r̂×A(r) dΩ. (35)

This result follows from the divergence theorm:∫
vol

∇ · Vd3r =

∫
surface

V·dA. (36)
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Singular contribution to dipolar field – continued

The divergence theorem can be used to prove Eq. (35) for each cartesian coordinate of
∇×A since ∇×A = x̂ (x̂ · (∇×A)) + ŷ (ŷ · (∇×A)) + ẑ (ẑ · (∇×A)). Note
that x̂ · (∇×A) = −∇ · (x̂×A) and that we can use the Divergence theorem with
V ≡ x̂×A(r) for the x− component for example:∫

vol

∇ · (x̂×A)d3r =

∫
surface

(x̂×A) · r̂dA =

∫
surface

(A× r̂) · x̂dA. (37)

Therefore,∫
r≤R

(∇×A)d3r = −
∫
r=R

(A× r̂) · (x̂x̂+ ŷŷ + ẑẑ)dA = R2

∫
r=R

(r̂×A)dΩ

(38)
which is identical to Eq. (35). We can use the identity (as in electrostatic case),∫

dΩ
r̂

|r− r′|
=

4π

3

r<
r2>

r̂′. (39)
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Singular contribution to dipolar field – continued

Now, expressing the vector potential in terms of the current density:

A(r) =
µ0

4π

∫
d3r

J(r′)

|r− r′|
, (40)

the integral over Ω in Eq. 35 becomes

R2

∫
r=R

(r̂×A)dΩ =
4πR2

3

µ0

4π

∫
d3r′

r<
r2>

r̂′ × J(r′). (41)

If the sphere R contains the entire current distribution, then r> = R and r< = r′ so that
(41) becomes

R2

∫
r=R

(r̂×A)dΩ =
4π

3

µ0

4π

∫
d3r′ r′ × J(r′) ≡ 8π

3

µ0

4π
m, (42)

which thus justifies the delta-function contribution in Eq. 30 and results so-called “Fermi
contact” contribution in the “hyperfine” interaction.
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Magnetic field due to electrons in the vicinity of a nucleus

Contribution due to “orbital” magnetism in a spherical atom

The current density associated with an electron in a bound state of an atom as described
by a quantum mechanical wavefunction ψnlml

(r) can be written:

J(r) =
−eℏmlϕ̂

mer sin θ
|ψnlml

(r)|2 . (43)

In the following, it will be convenient to represent the azimuthal unit vector ϕ̂ in terms of
cartesian coordinates:

ϕ̂ = − sinϕx̂+ cosϕŷ =
ẑ× r

r sin θ
. (44)

The vector potential for this current density can be written

A(r) = −µ0

4π

eℏ
me

ml

∫
d3r′

ẑ× r′

|r− r′|
|ψnlml

(r′)|2

r′2 sin2 θ′
(45)
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Contribution due to “orbital” magnetism in a spherical atom – continued

We want to evaluate the magnetic field B = ∇×A in the vicinity of the nucleus
(r → 0). Taking the curl of the Eq. 45, we obtain

Bo(r) =
µ0

4π

eℏ
me

ml

∫
d3r′

(r− r′)× (ẑ× r′)

|r− r′|3
|ψnlml

(r′)|2

r′2 sin2 θ′
(46)

Evaluating this expression with (r → 0), we obtain

Bo(0) = −µ0

4π

eℏ
me

ml

∫
d3r′

r′ × (ẑ× r′)

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(47)
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Contribution due to “orbital” magnetism in a spherical atom – continued

Bo(0) = −µ0

4π

eℏ
me

ml

∫
d3r′

r′ × (ẑ× r′)

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(48)

Expanding the cross product and expressing the result in spherical polar coordinates, we
obtain in the numerator
r̂′ × (ẑ× r̂′) = ẑ(1− cos2 θ′)− x̂ cos θ′ sin θ′ cosϕ′ − ŷ cos θ′ sin θ′ sinϕ′).

In evaluating the integration over the azimuthal variable ϕ′, the x̂ and ŷ components
vanish which reduces to

Bo(0) = −µ0

4π

eℏ
me

ml

∫
d3r′

ẑr′
2
sin2 θ′

r′3
|ψnlml

(r′)|2

r′2 sin2 θ′
(49)

and

Bo(0) = −µ0eℏmlẑ

4πme

∫
d3r′ |ψnlml

|2 1

r′3
≡ − µ0eẑ

4πme

⟨
Lz

r′3

⟩
. (50)
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“Hyperfine” interaction

The so-called “hyperfine” interaction results from the magnetic dipole moment of a
nucleus µN responding to the magnetic field formed by the magnetic dipole of the
intrinsic electron spin (µe) as well as the electron orbital current contribution. We know
that the intrinsic electron spin produces a magnetic dipole moment of strength (µe) so
that we can reasonably infer that it produces a magnetic field about the nucleus of the
form:

Bµe(r) =
µ0

4π

{
3r̂(µe · r̂)− µe

r3
+

8π

3
µeδ

3(r)

}
. (51)

The resulting interaction energy called the hyperfine interations is:

HHF = −µN · (Bµe
+Bo(0)) . (52)

HHF = −µ0

4π

(
3(µN · r̂)(µe · r̂)− µN · µe

r3
+

8π

3
µN · µeδ

3(r) +
e

me

⟨
L · µN

r3

⟩)
.

(53)
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