Curve name | $X_{103}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 15 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 12 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 6 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{30}$ | ||||||||||||
Curves that $X_{103}$ minimally covers | $X_{30}$ | ||||||||||||
Curves that minimally cover $X_{103}$ | $X_{296}$, $X_{297}$, $X_{298}$, $X_{299}$ | ||||||||||||
Curves that minimally cover $X_{103}$ and have infinitely many rational points. | $X_{297}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{103}) = \mathbb{Q}(f_{103}), f_{30} = f_{103}^{2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 3890x - 76825$, with conductor $4225$ | ||||||||||||
Generic density of odd order reductions | $13411/43008$ |