Curve name | $X_{104}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 9 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 5 \\ 6 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{30}$ | ||||||||||||
Curves that $X_{104}$ minimally covers | $X_{30}$ | ||||||||||||
Curves that minimally cover $X_{104}$ | $X_{292}$, $X_{293}$, $X_{294}$, $X_{295}$ | ||||||||||||
Curves that minimally cover $X_{104}$ and have infinitely many rational points. | $X_{295}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{104}) = \mathbb{Q}(f_{104}), f_{30} = \frac{-2}{f_{104}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 58815x - 5514400$, with conductor $4225$ | ||||||||||||
Generic density of odd order reductions | $13411/43008$ |