| Curve name | $X_{118o}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{118}$ | 
| Curves that $X_{118o}$ minimally covers |  | 
| Curves that minimally cover $X_{118o}$ |  | 
| Curves that minimally cover $X_{118o}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{12} + 864t^{10} - 13824t^{6} + 25920t^{4} + 13824t^{2} - 27648\]
\[B(t) = -432t^{18} + 5184t^{16} - 10368t^{14} - 96768t^{12} + 445824t^{10} - 
41472t^{8} - 2515968t^{6} + 3649536t^{4} - 1327104t^{2} + 1769472\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 71370x + 8011575$, with conductor $585$ | 
| Generic density of odd order reductions | $25/224$ |