| Curve name |
$X_{118q}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{118}$ |
| Curves that $X_{118q}$ minimally covers |
|
| Curves that minimally cover $X_{118q}$ |
|
| Curves that minimally cover $X_{118q}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} + 216t^{10} - 3456t^{6} + 6480t^{4} + 3456t^{2} - 6912\]
\[B(t) = -54t^{18} + 648t^{16} - 1296t^{14} - 12096t^{12} + 55728t^{10} -
5184t^{8} - 314496t^{6} + 456192t^{4} - 165888t^{2} + 221184\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 + xy = x^3 + x^2 + 5250x + 284625$, with conductor $975$ |
| Generic density of odd order reductions |
$25/224$ |