| Curve name | $X_{120j}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{120}$ | 
| Curves that $X_{120j}$ minimally covers |  | 
| Curves that minimally cover $X_{120j}$ |  | 
| Curves that minimally cover $X_{120j}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} + 648t^{10} - 6048t^{8} + 27648t^{6} - 62640t^{4} + 
58752t^{2} - 6912\]
\[B(t) = 54t^{18} - 1944t^{16} + 29808t^{14} - 254016t^{12} + 1312848t^{10} - 
4193856t^{8} + 8007552t^{6} - 8169984t^{4} + 3151872t^{2} + 221184\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 9x$, with conductor $63$ | 
| Generic density of odd order reductions | $17/168$ |