| Curve name | $X_{120n}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{120}$ | 
| Curves that $X_{120n}$ minimally covers |  | 
| Curves that minimally cover $X_{120n}$ |  | 
| Curves that minimally cover $X_{120n}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{16} + 4320t^{14} - 72576t^{12} + 663552t^{10} - 3568320t^{8} + 
11321856t^{6} - 19823616t^{4} + 15482880t^{2} - 1769472\]
\[B(t) = -432t^{24} + 25920t^{22} - 694656t^{20} + 10962432t^{18} - 
113021568t^{16} + 797879808t^{14} - 3926264832t^{12} + 13421998080t^{10} - 
31071485952t^{8} + 45951418368t^{6} - 38263062528t^{4} + 12570329088t^{2} + 
905969664\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 185220230x - 970197193353$, with conductor 
$22050$ | 
| Generic density of odd order reductions | $193/1792$ |