| Curve name |
$X_{121e}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 7 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 8 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{121}$ |
| Curves that $X_{121e}$ minimally covers |
|
| Curves that minimally cover $X_{121e}$ |
|
| Curves that minimally cover $X_{121e}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} - 432t^{10} - 2700t^{8} - 8208t^{6} - 12123t^{4} - 7128t^{2}
- 432\]
\[B(t) = -54t^{18} - 1296t^{16} - 13284t^{14} - 75600t^{12} - 259605t^{10} -
545616t^{8} - 674730t^{6} - 434808t^{4} - 101088t^{2} + 3456\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 + x^2 - 383x - 3012$, with conductor $1200$ |
| Generic density of odd order reductions |
$25/224$ |