Curve name | $X_{136}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $1$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{136}$ minimally covers | $X_{23}$, $X_{45}$, $X_{53}$ | |||||||||
Curves that minimally cover $X_{136}$ | $X_{251}$, $X_{257}$, $X_{264}$, $X_{277}$, $X_{382}$, $X_{383}$, $X_{384}$, $X_{385}$ | |||||||||
Curves that minimally cover $X_{136}$ and have infinitely many rational points. | ||||||||||
Model | A model was not computed. This curve is covered by $X_{53}$, which only has finitely many rational points. | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | |||||||||
Generic density of odd order reductions | N/A |