Curve name |
$X_{162}$ |
Index |
$24$ |
Level |
$16$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 1 & 5 \\ 14 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 9 \\ 14 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 3 \\ 2 & 1 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{30}$ |
Curves that $X_{162}$ minimally covers |
$X_{30}$ |
Curves that minimally cover $X_{162}$ |
$X_{292}$, $X_{296}$, $X_{410}$, $X_{419}$ |
Curves that minimally cover $X_{162}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 + x^2 + 3x - 5\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(1 : 0 : 1)$ |
\[ \infty \]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |