The modular curve $X_{199e}$

Curve name $X_{199e}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
Meaning/Special name
Chosen covering $X_{199}$
Curves that $X_{199e}$ minimally covers
Curves that minimally cover $X_{199e}$
Curves that minimally cover $X_{199e}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 12528t^{14} - 79056t^{12} - 257472t^{10} - 306720t^{8} - 1029888t^{6} - 1264896t^{4} + 801792t^{2} - 6912\] \[B(t) = -54t^{24} - 55728t^{22} + 2494800t^{20} - 1100736t^{18} - 4740768t^{16} + 120310272t^{14} + 404006400t^{12} + 481241088t^{10} - 75852288t^{8} - 70447104t^{6} + 638668800t^{4} - 57065472t^{2} - 221184\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - x^2 - 26304x + 1980288$, with conductor $816$
Generic density of odd order reductions $215/2688$

Back to the 2-adic image homepage.