| Curve name |
$X_{213f}$ |
| Index |
$96$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 7 & 7 \\ 8 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{213}$ |
| Curves that $X_{213f}$ minimally covers |
|
| Curves that minimally cover $X_{213f}$ |
|
| Curves that minimally cover $X_{213f}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{24} - 540t^{22} - 3942t^{20} - 12204t^{18} - 12069t^{16} +
7560t^{14} + 14796t^{12} + 7560t^{10} - 12069t^{8} - 12204t^{6} - 3942t^{4} -
540t^{2} - 27\]
\[B(t) = -54t^{36} - 1620t^{34} - 19926t^{32} - 127872t^{30} - 445176t^{28} -
752976t^{26} - 234360t^{24} + 974592t^{22} + 1197180t^{20} + 589896t^{18} +
1197180t^{16} + 974592t^{14} - 234360t^{12} - 752976t^{10} - 445176t^{8} -
127872t^{6} - 19926t^{4} - 1620t^{2} - 54\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 - x^2 - 2098741505x - 37006346101503$, with conductor
$277440$ |
| Generic density of odd order reductions |
$5/42$ |