Curve name | $X_{222}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 9 & 11 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{95}$ | ||||||||||||
Curves that $X_{222}$ minimally covers | $X_{95}$, $X_{107}$, $X_{124}$ | ||||||||||||
Curves that minimally cover $X_{222}$ | $X_{222a}$, $X_{222b}$, $X_{222c}$, $X_{222d}$ | ||||||||||||
Curves that minimally cover $X_{222}$ and have infinitely many rational points. | $X_{222a}$, $X_{222b}$, $X_{222c}$, $X_{222d}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{222}) = \mathbb{Q}(f_{222}), f_{95} = \frac{-2}{f_{222}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 11616x + 594512$, with conductor $4626$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |