The modular curve $X_{240c}$

Curve name $X_{240c}$
Index $96$
Level $32$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 16 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{13}$
$8$ $24$ $X_{36o}$
$16$ $48$ $X_{118u}$
Meaning/Special name
Chosen covering $X_{240}$
Curves that $X_{240c}$ minimally covers
Curves that minimally cover $X_{240c}$
Curves that minimally cover $X_{240c}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} + 13824t^{12} + 25920t^{8} - 13824t^{4} - 27648\] \[B(t) = -432t^{36} - 5184t^{32} - 10368t^{28} + 96768t^{24} + 445824t^{20} + 41472t^{16} - 2515968t^{12} - 3649536t^{8} - 1327104t^{4} - 1769472\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + x^2 - 33x - 11937$, with conductor $4800$
Generic density of odd order reductions $271/2688$

Back to the 2-adic image homepage.