Curve name | $X_{241h}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 4 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 20 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{241}$ | |||||||||||||||
Curves that $X_{241h}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{241h}$ | ||||||||||||||||
Curves that minimally cover $X_{241h}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{32} - 486t^{24} - 1323t^{16} - 1296t^{8} - 432\] \[B(t) = 54t^{48} - 1458t^{40} - 9882t^{32} - 23814t^{24} - 27540t^{16} - 15552t^{8} - 3456\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 1448499979x - 21218683826805$, with conductor $132098$ | |||||||||||||||
Generic density of odd order reductions | $13411/86016$ |