| Curve name |
$X_{243o}$ |
| Index |
$96$ |
| Level |
$32$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{243}$ |
| Curves that $X_{243o}$ minimally covers |
|
| Curves that minimally cover $X_{243o}$ |
|
| Curves that minimally cover $X_{243o}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{24} + 54t^{20} + 405t^{16} - 864t^{12} + 864t^{4} - 432\]
\[B(t) = -54t^{36} + 162t^{32} - 1782t^{28} + 4914t^{24} + 324t^{20} -
13932t^{16} + 12096t^{12} + 5184t^{8} - 10368t^{4} + 3456\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 + xy + y = x^3 - 22365501x - 41049362102$, with conductor $6150$ |
| Generic density of odd order reductions |
$73/672$ |