Curve name | $X_{284}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 2 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 9 & 9 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{90}$ | ||||||||||||
Curves that $X_{284}$ minimally covers | $X_{90}$, $X_{113}$, $X_{155}$ | ||||||||||||
Curves that minimally cover $X_{284}$ | $X_{580}$, $X_{584}$, $X_{650}$, $X_{674}$, $X_{695}$, $X_{706}$ | ||||||||||||
Curves that minimally cover $X_{284}$ and have infinitely many rational points. | |||||||||||||
Model | \[y^2 = x^3 + 8x\] | ||||||||||||
Info about rational points | $X_{284}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 27613028724215x + 55849486008698159294$, with conductor $2094789268$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |