Curve name |
$X_{285}$ |
Index |
$48$ |
Level |
$16$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 9 & 2 \\ 2 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 3 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 15 \\ 4 & 3 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{90}$ |
Curves that $X_{285}$ minimally covers |
$X_{90}$ |
Curves that minimally cover $X_{285}$ |
$X_{546}$, $X_{579}$, $X_{584}$, $X_{601}$ |
Curves that minimally cover $X_{285}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 + x\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[54000 \,\,(\text{CM by }-12)\]
|
$(0 : 0 : 1)$ |
\[54000 \,\,(\text{CM by }-12)\]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |