Curve name |
$X_{300}$ |
Index |
$48$ |
Level |
$16$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right],
\left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 15 & 13 \\ 0 & 1 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{91}$ |
Curves that $X_{300}$ minimally covers |
$X_{91}$ |
Curves that minimally cover $X_{300}$ |
$X_{544}$, $X_{545}$, $X_{582}$, $X_{588}$, $X_{591}$, $X_{598}$, $X_{600}$, $X_{615}$ |
Curves that minimally cover $X_{300}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 - x\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(-1 : 0 : 1)$ |
\[16581375 \,\,(\text{CM by }-28)\]
|
$(0 : 0 : 1)$ |
\[16581375 \,\,(\text{CM by }-28)\]
|
$(1 : 0 : 1)$ |
\[ \infty \]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |