Curve name | $X_{31}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{12}$ | |||||||||
Curves that $X_{31}$ minimally covers | $X_{12}$ | |||||||||
Curves that minimally cover $X_{31}$ | $X_{129}$, $X_{145}$ | |||||||||
Curves that minimally cover $X_{31}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{31}) = \mathbb{Q}(f_{31}), f_{12} = \frac{2}{f_{31}^{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 28x - 12$, with conductor $2312$ | |||||||||
Generic density of odd order reductions | $3331/10752$ |