Curve name | $X_{5}$ | |||||||||
Index | $2$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 0 & 1 \\ 1 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | Elliptic curves whose discriminant is twice a square | |||||||||
Chosen covering | $X_{1}$ | |||||||||
Curves that $X_{5}$ minimally covers | $X_{1}$ | |||||||||
Curves that minimally cover $X_{5}$ | $X_{17}$ | |||||||||
Curves that minimally cover $X_{5}$ and have infinitely many rational points. | $X_{17}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{5}) = \mathbb{Q}(f_{5}), f_{1} = 8f_{5}^{2} + 1728\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 47x - 126$, with conductor $1682$ | |||||||||
Generic density of odd order reductions | $3755/7168$ |