Curve name |
$X_{649}$ |
Index |
$96$ |
Level |
$32$ |
Genus |
$3$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 29 & 0 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 31 & 27 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 31 & 31 \\ 2 & 1 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{323}$ |
Curves that $X_{649}$ minimally covers |
$X_{323}$ |
Curves that minimally cover $X_{649}$ |
|
Curves that minimally cover $X_{649}$ and have infinitely many rational
points. |
|
Model |
\[x^4 - x^2y^2 - 2x^2z^2 - y^3z + 2yz^3 = 0\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(-2 : -4 : 1)$ |
\[\frac{777228872334890625}{60523872256}\]
|
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(0 : 0 : 1)$ |
\[ \infty \]
|
$(1 : 1 : 0)$ |
\[-3375 \,\,(\text{CM by }-7)\]
|
$(2 : -4 : 1)$ |
\[\frac{777228872334890625}{60523872256}\]
|
$(-1 : 1 : 0)$ |
\[-3375 \,\,(\text{CM by }-7)\]
|
|
Comments on finding rational points |
This curve is isomorphic to $X_{619}$. |
Elliptic curve whose $2$-adic image is the subgroup |
$y^2 + xy + y = x^3 - x^2 - 325630x - 71434867$, with conductor $17918$ |
Generic density of odd order reductions |
$410657/1835008$ |