Curve name | $X_{89}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 1 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{30}$ | |||||||||
Curves that $X_{89}$ minimally covers | $X_{30}$ | |||||||||
Curves that minimally cover $X_{89}$ | $X_{245}$, $X_{265}$, $X_{292}$, $X_{294}$, $X_{297}$, $X_{299}$ | |||||||||
Curves that minimally cover $X_{89}$ and have infinitely many rational points. | $X_{297}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{89}) = \mathbb{Q}(f_{89}), f_{30} = \frac{8f_{89} - 8}{f_{89}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 5620x + 160304$, with conductor $4056$ | |||||||||
Generic density of odd order reductions | $137/448$ |