Curve name | $X_{93}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{30}$ | |||||||||
Curves that $X_{93}$ minimally covers | $X_{30}$ | |||||||||
Curves that minimally cover $X_{93}$ | $X_{244}$, $X_{265}$, $X_{293}$, $X_{295}$, $X_{296}$, $X_{298}$ | |||||||||
Curves that minimally cover $X_{93}$ and have infinitely many rational points. | $X_{295}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{93}) = \mathbb{Q}(f_{93}), f_{30} = \frac{f_{93}^{2} - 2}{f_{93} + 1}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 355x + 2354$, with conductor $4056$ | |||||||||
Generic density of odd order reductions | $137/448$ |