Curve name | $X_{95c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 11 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 15 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 11 & 0 \\ 12 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{95}$ | ||||||||||||
Curves that $X_{95c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{95c}$ | |||||||||||||
Curves that minimally cover $X_{95c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{10} + 6048t^{6} - 6912t^{2}\] \[B(t) = 54t^{15} + 28512t^{11} - 456192t^{7} - 221184t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 2124x - 103883$, with conductor $873$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |