Curve name | $X_{95f}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{95}$ | |||||||||
Curves that $X_{95f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{95f}$ | ||||||||||
Curves that minimally cover $X_{95f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} + 20736t^{12} + 718848t^{8} + 5308416t^{4} - 7077888\] \[B(t) = 432t^{24} + 248832t^{20} + 7630848t^{16} - 1953497088t^{8} - 16307453952t^{4} - 7247757312\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 3041489x + 3803833791$, with conductor $161376$ | |||||||||
Generic density of odd order reductions | $149/896$ |