Curve name | $X_{98}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{98}$ minimally covers | $X_{25}$ | |||||||||
Curves that minimally cover $X_{98}$ | $X_{181}$, $X_{187}$, $X_{188}$, $X_{189}$, $X_{193}$, $X_{194}$, $X_{200}$, $X_{204}$, $X_{244}$, $X_{269}$, $X_{272}$, $X_{279}$, $X_{98a}$, $X_{98b}$, $X_{98c}$, $X_{98d}$, $X_{98e}$, $X_{98f}$, $X_{98g}$, $X_{98h}$, $X_{98i}$, $X_{98j}$, $X_{98k}$, $X_{98l}$, $X_{98m}$, $X_{98n}$, $X_{98o}$, $X_{98p}$ | |||||||||
Curves that minimally cover $X_{98}$ and have infinitely many rational points. | $X_{181}$, $X_{187}$, $X_{188}$, $X_{189}$, $X_{193}$, $X_{194}$, $X_{200}$, $X_{204}$, $X_{98a}$, $X_{98b}$, $X_{98c}$, $X_{98d}$, $X_{98e}$, $X_{98f}$, $X_{98g}$, $X_{98h}$, $X_{98i}$, $X_{98j}$, $X_{98k}$, $X_{98l}$, $X_{98m}$, $X_{98n}$, $X_{98o}$, $X_{98p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{98}) = \mathbb{Q}(f_{98}), f_{25} = f_{98}^{2} - 1\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 100x - 125$, with conductor $525$ | |||||||||
Generic density of odd order reductions | $19/168$ |