Exercises from Day 2 talk by Jeremy Rouse
4. Let $\sigma(n)$ denote the sum of the divisors of n. Compute

$$
\sum_{\substack{d<10^{100} \\ d \text { odd }}} \sigma(d) \sigma\left(10^{100}-d\right)
$$

Hints:
(a) Define $E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}$, where $\sigma_{3}(n)=\sum_{d \mid n} d^{3}$.
(b) Show that $h(z)=\frac{f(z)-f(2 z)}{24}=\sum_{n \text { odd }} \sigma(n) q^{n} \in M_{2}\left(\Gamma_{0}(4), \chi_{4}\right)$.
(c) Show that $h(z)^{2} \in M_{4}\left(\Gamma_{0}(4), \chi_{4}\right)$. Use that this space is spanned by $E_{4}(z), E_{4}(2 z)$ and $E_{4}(4 z)$.
5.
(a) Define $E_{2}(z)=1-24 \sum_{n=1}^{\infty} \sigma(n) q^{n}$. It's a fact that for any $N \geq 1$, $E_{2, N}(z)=E_{2}(z)-N E_{2}(N z)$ is an Eisenstein series in $M_{2}\left(\Gamma_{0}(N), \chi_{1}\right)$.
(b) Let $Q(x, y, z, w)=x^{2}+x y+y^{2}+11\left(z^{2}+z w+w^{2}\right)$. Express $\theta_{Q}(z)$ in terms of $E_{2,3}(z), E_{2,11}(z)$ and $E_{2,33}(z), f(z), f(z) \mid V(3)$, and $g(z)$.
(c) Find a number B so that if $n>B$ is squarefree, then n is represented by Q. What's the minimal such B ?

