Integers represented by positive-definite quadratic forms - the modular approach

Jeremy Rouse

Conference on aspects of the algebraic and analytic theory of quadratic forms
University of Georgia
July 23, 2017

Acknowledgements

- I'd like to thank the organizers of this conference for the opportunity to speak.

Acknowledgements

- I'd like to thank the organizers of this conference for the opportunity to speak.
- Some of the work I will mention was supported by NSF grant DMS-0901090.

Acknowledgements

- I'd like to thank the organizers of this conference for the opportunity to speak.
- Some of the work I will mention was supported by NSF grant DMS-0901090.
- I'd also like to thank the following people for very helpful conversations: Manjul Bhargava, Justin DeBenedetto, Noam Elkies, Jonathan Hanke, David Hansen, Will Jagy, Ben Kane, Ken Ono, and Katherine Thompson.

Outline

- Day 1

Outline

- Day 1
- Universality theorems

Outline

- Day 1
- Universality theorems
- Escalation

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms
- Determining the integers represented by a quadratic form

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms
- Determining the integers represented by a quadratic form
- Day 3

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms
- Determining the integers represented by a quadratic form
- Day 3
- The Petersson inner product

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms
- Determining the integers represented by a quadratic form
- Day 3
- The Petersson inner product
- L-functions

Outline

- Day 1
- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
- Overview of modular forms
- Theta series, Eisenstein series, newforms
- Determining the integers represented by a quadratic form
- Day 3
- The Petersson inner product
- L-functions
- Proof of a general theorem

History

- In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.

History

- In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.
- For example

$$
234567=381^{2}+299^{2}+2^{2}+1^{2}
$$

History

- In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.
- For example

$$
234567=381^{2}+299^{2}+2^{2}+1^{2}
$$

- Q: What other expressions represent all positive integers?

Ramanujan

Ramanujan

- In 1916, Ramanujan claimed that there are precisely 55 4-tuples of positive integers
(a, b, c, d) so that every positive integer is of the form

$$
a x^{2}+b y^{2}+c z^{2}+d w^{2} .
$$

Ramanujan

- In 1916, Ramanujan claimed that there are precisely 55 4-tuples of positive integers (a, b, c, d) so that every positive integer is of the form

$$
a x^{2}+b y^{2}+c z^{2}+d w^{2} .
$$

- In 1927, Dickson proved Ramanujan's claim (modulo one error). The form $x^{2}+2 y^{2}+5 z^{2}+5 w^{2}$ represents every positive integer except 15 .

Definitions (1/2)

- A quadratic form $Q(\vec{x})$ is called integer-matrix if

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

where A is a matrix with integer entries.

Definitions (1/2)

- A quadratic form $Q(\vec{x})$ is called integer-matrix if

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

where A is a matrix with integer entries.

- This means the cross terms must be even.

Definitions (1/2)

- A quadratic form $Q(\vec{x})$ is called integer-matrix if

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

where A is a matrix with integer entries.

- This means the cross terms must be even.
- The form $x^{2}+2 x y+4 y^{2}$ is an integer-matrix form.

Definitions (2/2)

- An integer-valued quadratic form Q can be written in the form

$$
Q(\vec{x})=\frac{1}{2} \vec{x}^{T} A \vec{x}
$$

where A has integer entries and even diagonal entries.

Definitions (2/2)

- An integer-valued quadratic form Q can be written in the form

$$
Q(\vec{x})=\frac{1}{2} \vec{x}^{T} A \vec{x}
$$

where A has integer entries and even diagonal entries.

- The form $x^{2}+x y+2 y^{2}$ is an integer-valued form, but not an integer-matrix form.

Definitions (2/2)

- An integer-valued quadratic form Q can be written in the form

$$
Q(\vec{x})=\frac{1}{2} \vec{x}^{T} A \vec{x}
$$

where A has integer entries and even diagonal entries.

- The form $x^{2}+x y+2 y^{2}$ is an integer-valued form, but not an integer-matrix form.
- A quadratic form Q is positive-definite if $Q(\vec{x}) \geq 0$ for all $\vec{x} \in \mathbb{R}^{n}$, with equality if and only if $\vec{x}=\overrightarrow{0}$.

Classification

- In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.

Classification

- In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.
- In 2000, Bhargava determined that there are actually 204 integer-matrix quaternary forms that represent all positive integers.

Classification

- In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.
- In 2000, Bhargava determined that there are actually 204 integer-matrix quaternary forms that represent all positive integers.
- Apparently, Willerding had missed 36 forms, listed one twice, and listed 9 forms that fail to represent all positive integers.

Universality theorems

Theorem (The 15-theorem, Conway-Schneeberger)
 A positive-definite, integer-matrix form Q represents every positive integer if and only if it represents $1,2,3,5,6,7,10,14$, and 15.

Universality theorems

Theorem (The 15-theorem, Conway-Schneeberger)

A positive-definite, integer-matrix form Q represents every positive integer if and only if it represents $1,2,3,5,6,7,10,14$, and 15.

Theorem (The 290-theorem, Bhargava-Hanke)

A positive-definite, integer-valued form Q represents every positive integer if and only if it represents
$1,2,3,5,6,7,10,13,14,15,17,19,21,22,23,26,29$,
$30,31,34,35,37,42,58,93,110,145,203$, and 290.

Consequences

- Each of these results is sharp. The form

$$
x^{2}+2 y^{2}+4 z^{2}+29 w^{2}+145 v^{2}-x z-y z
$$

represents every positive integer except 290.

Consequences

- Each of these results is sharp. The form

$$
x^{2}+2 y^{2}+4 z^{2}+29 w^{2}+145 v^{2}-x z-y z
$$

represents every positive integer except 290.

- If a form represents every positive integer less than 290, it represents every integer greater than 290.

Consequences

- Each of these results is sharp. The form

$$
x^{2}+2 y^{2}+4 z^{2}+29 w^{2}+145 v^{2}-x z-y z
$$

represents every positive integer except 290.

- If a form represents every positive integer less than 290, it represents every integer greater than 290.
- There are 6436 integer-valued quaternary forms that represent all positive integers.

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_{0} \subseteq S$ with the property that
Q represents everything in $S \Longleftrightarrow Q$ represents everything in S_{0}.

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_{0} \subseteq S$ with the property that
Q represents everything in $S \Longleftrightarrow Q$ represents everything in S_{0}.

- We say that a quadratic form Q is S-universal if Q represents everything in S.

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_{0} \subseteq S$ with the property that
Q represents everything in $S \Longleftrightarrow Q$ represents everything in S_{0}.

- We say that a quadratic form Q is S-universal if Q represents everything in S.
- Given a set S, how does one find the set S_{0} ?

Later results

Theorem (The 451-theorem, R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q represents all positive odds if and only if it represents

$$
\begin{aligned}
& 1,3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,47 \text {, } \\
& 51,53,57,59,77,83,85,87,89,91,93,105,119,123,133,137 \text {, } \\
& 143,145,187,195,203,205,209,231,319,385 \text {, and } 451 \text {. }
\end{aligned}
$$

Later results

Theorem (The 451-theorem, R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q represents all positive odds if and only if it represents

$$
\begin{aligned}
& 1,3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,47 \text {, } \\
& 51,53,57,59,77,83,85,87,89,91,93,105,119,123,133,137 \text {, } \\
& 143,145,187,195,203,205,209,231,319,385 \text {, and } 451 \text {. }
\end{aligned}
$$

Theorem (DeBenedetto-R, to appear in Ram. Journal)

A positive-definite, integer-valued form Q represents every positive integer coprime to 3 if and only if it represents

$$
\begin{aligned}
& 1,2,5,7,10,11,13,14,17,19,22,23,26,29,31,34,35 \\
& 37,38,46,47,55,58,62,70,94,110,119,145,203, \text { and } 290 .
\end{aligned}
$$

Two exceptions

- It follows from the proof of the 15 -theorem that if an integer-valued form Q represents all positive integers with one exception, then that exception must be $1,2,3,5,6,7,10$, 14 , or 15.

Two exceptions

- It follows from the proof of the 15 -theorem that if an integer-valued form Q represents all positive integers with one exception, then that exception must be $1,2,3,5,6,7,10$, 14 , or 15.

Theorem (BDMSST, to appear in Proc. Amer. Math. Soc.)

If a positive-definite integer-matrix form Q represents all positive integers with two exceptions, the pair of exceptions $\{m, n\}$ must be one of the following: $\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{1,7\},\{1,9\},\{1,10\}$,

```
{1,11},{1,13},{1,14},{1,15},{1,17},{1,19},{1,21},{1,23},{1,25},{1,30},{1,41},{1,55},
{2,3},{2,5},{2,6},{2,8},{2,10},{2,11},{2,14},{2,15},{2,18},{2,22},{2,30},{2,38},{2,50},
{3,6},{3,7},{3,11},{3,12},{3,19},{3,21},{3,27},{3,30},{3,35},{3,39},{5,7},{5,10},
{5,13},{5,14},{5,20},{5,21},{5,29}, {5,30},{5,35},{5,37},{5,42},{5,125},{6,15},{6,54},
{7, 10},{7,15},{7,23},{7,28},{7,31},{7,39},{7,55},{10,15},{10, 26},{10,40},{10,58},
{10, 250},{14, 30},{14, 56}, {14,78}.
```


Lattices

- A lattice L of dimension n is a discrete subgroup of \mathbb{R}^{n} that is isomorphic to \mathbb{Z}^{n}.

Lattices

- A lattice L of dimension n is a discrete subgroup of \mathbb{R}^{n} that is isomorphic to \mathbb{Z}^{n}.
- A lattice comes with a positive definite inner product $\langle\cdot, \cdot\rangle$.

Lattices

- A lattice L of dimension n is a discrete subgroup of \mathbb{R}^{n} that is isomorphic to \mathbb{Z}^{n}.
- A lattice comes with a positive definite inner product $\langle\cdot, \cdot\rangle$.
- Given a lattice L, the function $Q(\vec{x})=\langle\vec{x}, \vec{x}\rangle$ is a quadratic form.

Lattices

- A lattice L of dimension n is a discrete subgroup of \mathbb{R}^{n} that is isomorphic to \mathbb{Z}^{n}.
- A lattice comes with a positive definite inner product $\langle\cdot, \cdot\rangle$.
- Given a lattice L, the function $Q(\vec{x})=\langle\vec{x}, \vec{x}\rangle$ is a quadratic form.
- Conversely, given a quadratic form Q, one can associate to it a lattice $L \cong \mathbb{Z}^{4}$ by defining

$$
\langle\vec{x}, \vec{y}\rangle=\frac{1}{2}(Q(\vec{x}+\vec{y})-Q(\vec{x})-Q(\vec{y}))
$$

Escalation

- If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the truant of Q / L, the smallest element $t \in S$ that is not represented by Q.

Escalation

- If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the truant of Q / L, the smallest element $t \in S$ that is not represented by Q.
- An escalation of L is a lattice L^{\prime} generated by L and a vector of norm t.

Escalation

- If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the truant of Q / L, the smallest element $t \in S$ that is not represented by Q.
- An escalation of L is a lattice L^{\prime} generated by L and a vector of norm t.
- An escalator lattice is a lattice obtained by repeatedly escalating the zero-dimensional lattice.

Example (1/3)

- Let $S=\{1,3,5,7, \ldots\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^{2}.

Example (1/3)

- Let $S=\{1,3,5,7, \ldots\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^{2}.
- This quadratic form has truant 3 , and its escalations are $x^{2}+a x y+3 y^{2}$. To be positive-definite we must have $-3 \leq a \leq 3$.

Example (1/3)

- Let $S=\{1,3,5,7, \ldots\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^{2}.
- This quadratic form has truant 3 , and its escalations are $x^{2}+a x y+3 y^{2}$. To be positive-definite we must have $-3 \leq a \leq 3$.
- Each of $x^{2}+3 y^{2}, x^{2}+x y+3 y^{2}, x^{2}+2 x y+3 y^{2}$ and $x^{2}+3 x y+3 y^{2}$ has truant 5 or 7 .

Example (2/3)

- Escalating the four forms listed previously gives 73 three-dimensional lattices.

Example (2/3)

- Escalating the four forms listed previously gives 73 three-dimensional lattices.
- Of these, 50 of these fail to represent some odd number ≤ 73. The remaining 23 represent all odd numbers $\leq 10^{6}$.

Example (2/3)

- Escalating the four forms listed previously gives 73 three-dimensional lattices.
- Of these, 50 of these fail to represent some odd number ≤ 73. The remaining 23 represent all odd numbers $\leq 10^{6}$.
- Escalating the 50 lattices that are definitely not S-universal yields 24312 four-dimensional escalator lattices.

Example (3/3)

- It can be tricky to determine whether a lattice is S-universal or not.

Example (3/3)

- It can be tricky to determine whether a lattice is S-universal or not.
- In particular, it is not known whether or not

$$
\begin{aligned}
& x^{2}+2 y^{2}+5 z^{2}+x y \\
& x^{2}+3 y^{2}+6 z^{2}+x y+2 y z \\
& x^{2}+3 y^{2}+7 z^{2}+x y+x z
\end{aligned}
$$

each represents all odd numbers.

Example (3/3)

- It can be tricky to determine whether a lattice is S-universal or not.
- In particular, it is not known whether or not

$$
\begin{aligned}
& x^{2}+2 y^{2}+5 z^{2}+x y \\
& x^{2}+3 y^{2}+6 z^{2}+x y+2 y z \\
& x^{2}+3 y^{2}+7 z^{2}+x y+x z
\end{aligned}
$$

each represents all odd numbers.

- One can show that GRH implies that each of the above three forms represents all odd numbers.

S-universal escalators

- Fact 1: A lattice L is S-universal if and only if it has a sublattice L^{\prime} which is an S-universal escalator lattice.

S-universal escalators

- Fact 1: A lattice L is S-universal if and only if it has a sublattice L^{\prime} which is an S-universal escalator lattice.
- Proof: Suppose that L is S-universal. If $S=\left\{t_{1}, t_{2}, t_{3}, \ldots\right\}$, let L_{1} be a sublattice of L generated by a vector of norm t_{1}. For $i \geq 2$, let L_{i} be a lattice containing L_{i-1} that represents t_{i}.

S-universal escalators

- Fact 1: A lattice L is S-universal if and only if it has a sublattice L^{\prime} which is an S-universal escalator lattice.
- Proof: Suppose that L is S-universal. If $S=\left\{t_{1}, t_{2}, t_{3}, \ldots\right\}$, let L_{1} be a sublattice of L generated by a vector of norm t_{1}. For $i \geq 2$, let L_{i} be a lattice containing L_{i-1} that represents t_{i}.
- The ascending chain $L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \cdots \subseteq L$ must stabilize. It stabilizes in an S-universal escalator lattice.

More about escalators

- Fact 2: The set S_{0} in Bhargava's theorem is precisely the set of truants of escalator lattices.

More about escalators

- Fact 2: The set S_{0} in Bhargava's theorem is precisely the set of truants of escalator lattices.
- The hard part is, given a quadratic form Q, determining whether it is S-universal or not.

More about escalators

- Fact 2: The set S_{0} in Bhargava's theorem is precisely the set of truants of escalator lattices.
- The hard part is, given a quadratic form Q, determining whether it is S-universal or not.
- Exercise 1: Suppose that Q is a positive-definite quadratic form. Assume that Q represents 2 , and Q also represents 3 . Show that Q also represents 818.

More about escalators

- Fact 2: The set S_{0} in Bhargava's theorem is precisely the set of truants of escalator lattices.
- The hard part is, given a quadratic form Q, determining whether it is S-universal or not.
- Exercise 1: Suppose that Q is a positive-definite quadratic form. Assume that Q represents 2 , and Q also represents 3 . Show that Q also represents 818.
- Exercise 2: Let $S=\mathbb{N}$ be the set of positive integers. Show that there is no positive-definite S-universal ternary quadratic form.

Necessary conditions

- In order for there to be a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z}$,

Necessary conditions

- In order for there to be a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z}$, it must be that for all $m \geq 1$, there is a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z} / m \mathbb{Z}$.

Necessary conditions

- In order for there to be a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z}$, it must be that for all $m \geq 1$, there is a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z} / m \mathbb{Z}$.
- For example, $Q(x, y, z, w)=x^{2}+y^{2}+z^{2}+8 w^{2}$ does not represent any $n \equiv 7(\bmod 8)$ because there are no solutions to

$$
7 \equiv x^{2}+y^{2}+z^{2}+8 w^{2} \quad(\bmod 8)
$$

Necessary conditions

- In order for there to be a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z}$, it must be that for all $m \geq 1$, there is a solution to $Q\left(x_{1}, x_{2}, \ldots, x_{r}\right)=n$ with $x_{i} \in \mathbb{Z} / m \mathbb{Z}$.
- For example, $Q(x, y, z, w)=x^{2}+y^{2}+z^{2}+8 w^{2}$ does not represent any $n \equiv 7(\bmod 8)$ because there are no solutions to

$$
7 \equiv x^{2}+y^{2}+z^{2}+8 w^{2} \quad(\bmod 8)
$$

- It turns out that Q represents every positive integer that is not congruent to $7(\bmod 8)$.

p-adic numbers

- For $x \in \mathbb{Q}$ and a prime number p, write $x=p^{k} \cdot \frac{a}{b}$ where $\operatorname{gcd}(a, b)=1$ and $p \nmid a$ and $p \nmid b$.

p-adic numbers

- For $x \in \mathbb{Q}$ and a prime number p, write $x=p^{k} \cdot \frac{a}{b}$ where $\operatorname{gcd}(a, b)=1$ and $p \nmid a$ and $p \nmid b$.
- Define $|x|_{p}=p^{-k}$. Define a metric on \mathbb{Q} by $d(x, y)=|x-y|_{p}$.

p-adic numbers

- For $x \in \mathbb{Q}$ and a prime number p, write $x=p^{k} \cdot \frac{a}{b}$ where $\operatorname{gcd}(a, b)=1$ and $p \nmid a$ and $p \nmid b$.
- Define $|x|_{p}=p^{-k}$. Define a metric on \mathbb{Q} by $d(x, y)=|x-y|_{p}$.
- Let \mathbb{Q}_{p} be the completion of \mathbb{Q} with respect to this metric and $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$.

Local stuff

- We say that a quadratic form Q locally represents $n>0$ if, for all primes p, there is a solution to $Q(\vec{x})=n$ with $\vec{x} \in \mathbb{Z}_{p}^{r}$.

Local stuff

- We say that a quadratic form Q locally represents $n>0$ if, for all primes p, there is a solution to $Q(\vec{x})=n$ with $\vec{x} \in \mathbb{Z}_{p}^{r}$.
- We say that Q_{1} and Q_{2} are locally equivalent if $Q_{i}=\frac{1}{2} \vec{x}^{\top} A_{i} \vec{x}$ and for all primes p, there is a matrix $M \in \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ so that

$$
M A_{1} M^{T}=A_{2}
$$

Local stuff

- We say that a quadratic form Q locally represents $n>0$ if, for all primes p, there is a solution to $Q(\vec{x})=n$ with $\vec{x} \in \mathbb{Z}_{p}^{r}$.
- We say that Q_{1} and Q_{2} are locally equivalent if $Q_{i}=\frac{1}{2} \vec{x}^{T} A_{i} \vec{x}$ and for all primes p, there is a matrix $M \in \mathrm{GL}_{r}\left(\mathbb{Z}_{p}\right)$ so that

$$
M A_{1} M^{T}=A_{2}
$$

Theorem (Hasse-Minkowski)

Suppose that Q is a positive-definite quadratic form and n is locally represented by Q. Then there is some $\vec{x} \in \mathbb{Q}^{r}$ so that $Q(\vec{x})=n$.

The genus

- If Q is a positive-definite quadratic form, we let $\operatorname{Gen}(Q)$ denote the set of QFs that are locally equivalent to Q.

The genus

- If Q is a positive-definite quadratic form, we let $\operatorname{Gen}(Q)$ denote the set of QFs that are locally equivalent to Q.

Theorem

The set $\operatorname{Gen}(Q)$ is finite.

The genus

- If Q is a positive-definite quadratic form, we let $\operatorname{Gen}(Q)$ denote the set of QFs that are locally equivalent to Q.

Theorem

The set $\operatorname{Gen}(Q)$ is finite.

Theorem

If n is locally represented by Q, then there is at least one form $R \in \operatorname{Gen}(Q)$ so that R represents Q.

Example

- Let $Q_{1}=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then $\operatorname{Gen}\left(Q_{1}\right)$ consists of two forms.

Example

- Let $Q_{1}=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then $\operatorname{Gen}\left(Q_{1}\right)$ consists of two forms.
- The other form is $Q_{2}=x^{2}+x y+y^{2}+8 z^{2}$.

Example

- Let $Q_{1}=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then $\operatorname{Gen}\left(Q_{1}\right)$ consists of two forms.
- The other form is $Q_{2}=x^{2}+x y+y^{2}+8 z^{2}$.
- Note: If there is a genus $\operatorname{Gen}(Q)$ consisting of a single form, that form is guaranteed to represent all n that are locally represented by Q.

Tartakowski's theorem

- The Hasse-Minkowski theorem does not guarantee that n is actually represented by Q.

Tartakowski's theorem

- The Hasse-Minkowski theorem does not guarantee that n is actually represented by Q.

Theorem (Tartakowski)

Suppose that Q is a positive-definite quadratic form in $r \geq 5$ variables. Then every sufficiently large locally represented positive integer is represented by Q.

What happens for $r=4$?

- Let $Q(x, y, z, w)=x^{2}+y^{2}+7 z^{2}+7 w^{2}$. Then Q locally represents every positive integer.

What happens for $r=4$?

- Let $Q(x, y, z, w)=x^{2}+y^{2}+7 z^{2}+7 w^{2}$. Then Q locally represents every positive integer.
- However, if $Q(x, y, z, w) \equiv 0(\bmod 49)$, then $x \equiv y \equiv z \equiv w$ $(\bmod 7)$.

What happens for $r=4$?

- Let $Q(x, y, z, w)=x^{2}+y^{2}+7 z^{2}+7 w^{2}$. Then Q locally represents every positive integer.
- However, if $Q(x, y, z, w) \equiv 0(\bmod 49)$, then $x \equiv y \equiv z \equiv w$ $(\bmod 7)$.
- It follows that Q does not represent $3 \cdot 49^{n}$ for any $n \geq 0$.

Anisotropic primes

- We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_{p}^{r}$ and $Q(\vec{x})=0$, then $\vec{x}=\overrightarrow{0}$.

Anisotropic primes

- We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_{p}^{r}$ and $Q(\vec{x})=0$, then $\vec{x}=\overrightarrow{0}$.
- If Q is anisotropic at p, then $r \leq 4$.

Anisotropic primes

- We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_{p}^{r}$ and $Q(\vec{x})=0$, then $\vec{x}=\overrightarrow{0}$.
- If Q is anisotropic at p, then $r \leq 4$.

Theorem

Suppose that Q is a four-variable quadratic form. Then there is a constant $C(Q)$ so that if $n>C(Q)$ is locally represented by Q, then either n is represented by Q, or there is an anisotropic prime p so that $p^{2} \mid n$ and n / p^{2} is not represented by Q.

A three-variable phenomenon

- Let $Q(x, y, z)=3 x^{2}+4 y^{2}+9 z^{2}$.

A three-variable phenomenon

- Let $Q(x, y, z)=3 x^{2}+4 y^{2}+9 z^{2}$.
- This form locally represents n provided $n \not \equiv 2(\bmod 4)$ and $n \not \equiv 2 \cdot 3^{\alpha-1}\left(\bmod 3^{\alpha}\right)$ for any α.

A three-variable phenomenon

- Let $Q(x, y, z)=3 x^{2}+4 y^{2}+9 z^{2}$.
- This form locally represents n provided $n \not \equiv 2(\bmod 4)$ and $n \not \equiv 2 \cdot 3^{\alpha-1}\left(\bmod 3^{\alpha}\right)$ for any α.
- Any perfect square is locally represented by Q.

A three-variable phenomenon

- Let $Q(x, y, z)=3 x^{2}+4 y^{2}+9 z^{2}$.
- This form locally represents n provided $n \not \equiv 2(\bmod 4)$ and $n \not \equiv 2 \cdot 3^{\alpha-1}\left(\bmod 3^{\alpha}\right)$ for any α.
- Any perfect square is locally represented by Q.
- However Q does not represent n^{2} if all prime factors of n are $\equiv 1$ $(\bmod 3)$.

How many local solutions?

- We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.

How many local solutions?

- We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.
- If Q is a form, n is a positive integer, and p is a prime, define

$$
\beta_{p}(n)=\lim _{U \rightarrow\{n\}} \frac{\operatorname{Vol}\left(Q^{-1}(U)\right)}{\operatorname{Vol}(U)}
$$

How many local solutions?

- We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.
- If Q is a form, n is a positive integer, and p is a prime, define

$$
\beta_{p}(n)=\lim _{U \rightarrow\{n\}} \frac{\operatorname{Vol}\left(Q^{-1}(U)\right)}{\operatorname{Vol}(U)}
$$

- More concretely, this is

$$
\beta_{p}(n)=\lim _{v \rightarrow \infty} \frac{\#\left\{\vec{x} \in\left(\mathbb{Z} / p^{v} \mathbb{Z}\right)^{r}: Q(\vec{x}) \equiv n \quad\left(\bmod p^{v}\right)\right.}{p^{(r-1) v}} .
$$

Local densities

- If $p=\infty$, and $Q=\frac{1}{2} \vec{x}^{T} A \vec{x}$, then

$$
\beta_{\infty}(n)=\frac{4 \pi^{2} n}{\sqrt{\operatorname{det}(A)}}
$$

Local densities

- If $p=\infty$, and $Q=\frac{1}{2} \vec{x}^{\top} A \vec{x}$, then

$$
\beta_{\infty}(n)=\frac{4 \pi^{2} n}{\sqrt{\operatorname{det}(A)}}
$$

- Computing $\beta_{p}(n)$ can be tricky in general. There are explicit formulas for the $\beta_{p}(n)$ given in Yang's 1998 paper in the Journal of Number Theory.

Local densities

- If $p=\infty$, and $Q=\frac{1}{2} \vec{x}^{\top} A \vec{x}$, then

$$
\beta_{\infty}(n)=\frac{4 \pi^{2} n}{\sqrt{\operatorname{det}(A)}}
$$

- Computing $\beta_{p}(n)$ can be tricky in general. There are explicit formulas for the $\beta_{p}(n)$ given in Yang's 1998 paper in the Journal of Number Theory.
- The earliest work on quadratic forms was done via the circle method, and

$$
\prod_{p \leq \infty} \beta_{p}(n)
$$

is the "main term" approximation for $r_{Q}(n)$.

Definition

- A quadratic form Q is called regular if every locally represented integer is represented.

Definition

- A quadratic form Q is called regular if every locally represented integer is represented.
- As noted above, if $\operatorname{Gen}(Q)$ consists of only one class, then Q is automatically regular.

Definition

- A quadratic form Q is called regular if every locally represented integer is represented.
- As noted above, if $\operatorname{Gen}(Q)$ consists of only one class, then Q is automatically regular.

Theorem (Kaplansky, 1995)

The form $Q=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$ is regular.

Proof of Kaplansky's theorem (1/2)

Lemma

If $n=x^{2}+x y+y^{2}$, then there are integers r and s so that $n=r^{2}+3 s^{2}$.

Proof of Kaplansky's theorem (1/2)

Lemma

If $n=x^{2}+x y+y^{2}$, then there are integers r and s so that $n=r^{2}+3 s^{2}$.

- If one of x or y is even (say x with $x=2 k$), we have $n=4 k^{2}+2 k y+y^{2}=(k+y)^{2}+3 k^{2}$.

Proof of Kaplansky's theorem (1/2)

Lemma

If $n=x^{2}+x y+y^{2}$, then there are integers r and s so that $n=r^{2}+3 s^{2}$.

- If one of x or y is even (say x with $x=2 k$), we have $n=4 k^{2}+2 k y+y^{2}=(k+y)^{2}+3 k^{2}$.
- If x and y are both odd, we rewrite $n=x^{2}+x y+y^{2}=(x+y)^{2}+(x+y)(-x)+(-x)^{2}=A^{2}+A B+B^{2}$.

Proof of Kaplansky's theorem (2/2)

- Assume that n is locally represented by
$Q=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then either n is represented by Q, or by $R=x^{2}+x y+y^{2}+8 z^{2}$, the other form in $\operatorname{Gen}(Q)$.

Proof of Kaplansky's theorem (2/2)

- Assume that n is locally represented by
$Q=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then either n is represented by Q, or by $R=x^{2}+x y+y^{2}+8 z^{2}$, the other form in $\operatorname{Gen}(Q)$.
- Assume that $R=x^{2}+x y+y^{2}+8 z^{2}$ represents n. Then, there are $r, s \in \mathbb{Z}$ so that $n=r^{2}+3 s^{2}+8 z^{2}$.

Proof of Kaplansky's theorem (2/2)

- Assume that n is locally represented by
$Q=x^{2}+3 y^{2}+3 z^{2}+x y+3 y z$. Then either n is represented by Q, or by $R=x^{2}+x y+y^{2}+8 z^{2}$, the other form in $\operatorname{Gen}(Q)$.
- Assume that $R=x^{2}+x y+y^{2}+8 z^{2}$ represents n. Then, there are $r, s \in \mathbb{Z}$ so that $n=r^{2}+3 s^{2}+8 z^{2}$.
- A simple calculation shows that $Q(r-z, 2 z, s-z)=n$. This proves that Q is regular.

Regular ternary quadratic forms

- In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.

Regular ternary quadratic forms

- In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.
- Of their 913 candidates, they proved that 891 of them were regular.

Regular ternary quadratic forms

- In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.
- Of their 913 candidates, they proved that 891 of them were regular.
- In 2011, Oh proved that 8 more of their candidates were regular. In 2014, Lemke-Oliver proved the remaining 14 were regular assuming GRH.

Using regular ternary forms

- Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.

Using regular ternary forms

- Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.
- Let L be the quaternary lattice. Suppose that L has a sublattice L^{\prime} so that
- L^{\prime} corresponds to a regular ternary quadratic form,

Using regular ternary forms

- Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.
- Let L be the quaternary lattice. Suppose that L has a sublattice L^{\prime} so that
- L^{\prime} corresponds to a regular ternary quadratic form,
- $L^{\prime} \oplus\left(L^{\prime}\right)^{\perp}$ locally represents everything in S.

Using regular ternary forms

- Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.
- Let L be the quaternary lattice. Suppose that L has a sublattice L^{\prime} so that
- L^{\prime} corresponds to a regular ternary quadratic form,
- $L^{\prime} \oplus\left(L^{\prime}\right)^{\perp}$ locally represents everything in S.
- Then a simple calculation will determine the integers in S that are represented by L.

Example I

- Let $Q(x, y, z, w)=x^{2}+y^{2}+y z+2 z^{2}+7 w^{2}$. The form $T(x, y, z)=x^{2}+y^{2}+y z+2 z^{2}$ is regular.

Example I

- Let $Q(x, y, z, w)=x^{2}+y^{2}+y z+2 z^{2}+7 w^{2}$. The form $T(x, y, z)=x^{2}+y^{2}+y z+2 z^{2}$ is regular.
- The form T represents all positive integers except those $\equiv 21,35,42(\bmod 49)$.

Example I

- Let $Q(x, y, z, w)=x^{2}+y^{2}+y z+2 z^{2}+7 w^{2}$. The form $T(x, y, z)=x^{2}+y^{2}+y z+2 z^{2}$ is regular.
- The form T represents all positive integers except those $\equiv 21,35,42(\bmod 49)$.
- Since

$$
\begin{aligned}
& 21 \equiv 7 \cdot 1^{2}+14(\bmod 49) \\
& 35 \equiv 7 \cdot 2^{2}+7(\bmod 49) \\
& 42 \equiv 7 \cdot 2^{2}+14(\bmod 49)
\end{aligned}
$$

Q represents all positive integers.

Example II

- Let $Q(x, y, z, w)=x^{2}+x y+3 y^{2}+4 z^{2}+77 w^{2}$. The form $T(x, y, z)=x^{2}+x y+3 y^{2}+4 z^{2}$ is regular.

Example II

- Let $Q(x, y, z, w)=x^{2}+x y+3 y^{2}+4 z^{2}+77 w^{2}$. The form $T(x, y, z)=x^{2}+x y+3 y^{2}+4 z^{2}$ is regular.
- The form T is regular, and fails to represent only those n with $n \equiv 2(\bmod 4)$ and $n=11^{\alpha} \beta$ with α odd and $\left(\frac{\beta}{11}\right)=-1$.

Example II

- Let $Q(x, y, z, w)=x^{2}+x y+3 y^{2}+4 z^{2}+77 w^{2}$. The form $T(x, y, z)=x^{2}+x y+3 y^{2}+4 z^{2}$ is regular.
- The form T is regular, and fails to represent only those n with $n \equiv 2(\bmod 4)$ and $n=11^{\alpha} \beta$ with α odd and $\left(\frac{\beta}{11}\right)=-1$.
- A computer program needs to check 235 residue classes. It finds that Q represents all odd numbers except
$143,187,231,385,451,627,935,1111,1419,1903$, and 2387.

Proving the 451-theorem

- This method of using regular forms is a key method to proving the 451-theorem.

Proving the 451-theorem

- This method of using regular forms is a key method to proving the 451-theorem.
- There are 24312 four-dimensional escalators, and one must understand the odd integers represented by each.

Proving the 451-theorem

- This method of using regular forms is a key method to proving the 451-theorem.
- There are 24312 four-dimensional escalators, and one must understand the odd integers represented by each.
- This method of regular ternary forms can be used to handle about 7000 of the 24312 .

An exercise

- The form $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is regular. It represents all positive integers not of the form $4^{k}(8 \ell+7)$.

An exercise

- The form $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is regular. It represents all positive integers not of the form $4^{k}(8 \ell+7)$.
- Exercise 3: Let p be a prime number and $Q(x, y, z, w)=x^{2}+p y^{2}+p z^{2}+p w^{2}$.

An exercise

- The form $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is regular. It represents all positive integers not of the form $4^{k}(8 \ell+7)$.
- Exercise 3: Let p be a prime number and $Q(x, y, z, w)=x^{2}+p y^{2}+p z^{2}+p w^{2}$.
- Show that if $p \not \equiv 1(\bmod 8)$, then every positive integer n which is congruent to a square $\bmod p$ and $n>p(4 p-5)$ is represented by Q.

An exercise

- The form $T(x, y, z)=x^{2}+y^{2}+z^{2}$ is regular. It represents all positive integers not of the form $4^{k}(8 \ell+7)$.
- Exercise 3: Let p be a prime number and $Q(x, y, z, w)=x^{2}+p y^{2}+p z^{2}+p w^{2}$.
- Show that if $p \not \equiv 1(\bmod 8)$, then every positive integer n which is congruent to a square $\bmod p$ and $n>p(4 p-5)$ is represented by Q.
- Show that if $p \equiv 3(\bmod 8)$, then $n=p(4 p-5)$ is not represented by Q.

