Integers represented by positive-definite quadratic forms - the modular approach

Jeremy Rouse

Conference on aspects of the algebraic and analytic theory of quadratic forms University of Georgia July 23, 2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Acknowledgements

• I'd like to thank the organizers of this conference for the opportunity to speak.

・ロト ・回ト ・ヨト ・ヨト

3

Acknowledgements

• I'd like to thank the organizers of this conference for the opportunity to speak.

• Some of the work I will mention was supported by NSF grant DMS-0901090.

Acknowledgements

• I'd like to thank the organizers of this conference for the opportunity to speak.

 \bullet Some of the work I will mention was supported by NSF grant DMS-0901090.

• I'd also like to thank the following people for very helpful conversations: Manjul Bhargava, Justin DeBenedetto, Noam Elkies, Jonathan Hanke, David Hansen, Will Jagy, Ben Kane, Ken Ono, and Katherine Thompson.

イロト イポト イヨト イヨト

Outline

• Day 1

Jeremy Rouse Integers represented by QFs 3/40

・ロン ・聞と ・ほと ・ほど

Outline

- Day 1
 - Universality theorems

・ロン ・聞と ・ほと ・ほど

Outline

- Day 1
 - Universality theorems
 - Escalation

イロト イポト イヨト イヨト

Outline

- Day 1
 - Universality theorems
 - Escalation
 - Congruences conditions for representability

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2

イロン 不同 とくほど 不同と

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms
 - Determining the integers represented by a quadratic form

(1日) (1日) (日)

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms
 - Determining the integers represented by a quadratic form
- Day 3

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms
 - Determining the integers represented by a quadratic form
- Day 3
 - The Petersson inner product

回 と く ヨ と く ヨ と

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms
 - Determining the integers represented by a quadratic form
- Day 3
 - The Petersson inner product
 - *L*-functions

回 と く ヨ と く ヨ と

Outline

• Day 1

- Universality theorems
- Escalation
- Congruences conditions for representability
- Regular quadratic forms
- Day 2
 - Overview of modular forms
 - Theta series, Eisenstein series, newforms
 - Determining the integers represented by a quadratic form
- Day 3
 - The Petersson inner product
 - *L*-functions
 - Proof of a general theorem

回 と く ヨ と く ヨ と

History

• In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.

History

• In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.

• For example

$$234567 = 381^2 + 299^2 + 2^2 + 1^2.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

History

• In 1770, Lagrange proved that every positive integer can be written as a sum of four squares.

• For example

$$234567 = 381^2 + 299^2 + 2^2 + 1^2.$$

• Q: What other expressions represent all positive integers?

イロト イポト イヨト イヨト

Ramanujan

イロト イポト イヨト イヨト

Ramanujan

• In 1916, Ramanujan claimed that there are precisely 55 4-tuples of positive integers (a, b, c, d) so that every positive integer is of the form

$$ax^2 + by^2 + cz^2 + dw^2$$

Ramanujan

• In 1916, Ramanujan claimed that there are precisely 55 4-tuples of positive integers (*a*, *b*, *c*, *d*) so that every positive integer is of the form

$$ax^2 + by^2 + cz^2 + dw^2.$$

• In 1927, Dickson proved Ramanujan's claim (modulo one error). The form $x^2 + 2y^2 + 5z^2 + 5w^2$ represents every positive integer except 15.

Definitions (1/2)

• A quadratic form $Q(\vec{x})$ is called *integer-matrix* if

 $Q(\vec{x}) = \vec{x}^T A \vec{x}$

where A is a matrix with integer entries.

Definitions (1/2)

• A quadratic form $Q(\vec{x})$ is called *integer-matrix* if

$$Q(\vec{x}) = \vec{x}^T A \vec{x}$$

where A is a matrix with integer entries.

• This means the cross terms must be even.

(4月) イヨト イヨト

Definitions (1/2)

• A quadratic form $Q(\vec{x})$ is called *integer-matrix* if

 $Q(\vec{x}) = \vec{x}^T A \vec{x}$

where A is a matrix with integer entries.

- This means the cross terms must be even.
- The form $x^2 + 2xy + 4y^2$ is an integer-matrix form.

(4月) イヨト イヨト

Definitions (2/2)

• An integer-valued quadratic form Q can be written in the form

$$Q(\vec{x}) = \frac{1}{2}\vec{x}^{T}A\vec{x}$$

where A has integer entries and even diagonal entries.

Definitions (2/2)

• An integer-valued quadratic form Q can be written in the form

$$Q(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$$

where A has integer entries and even diagonal entries.

• The form $x^2 + xy + 2y^2$ is an integer-valued form, but not an integer-matrix form.

(4月) (1日) (日)

Definitions (2/2)

• An integer-valued quadratic form Q can be written in the form

$$Q(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$$

where A has integer entries and even diagonal entries.

• The form $x^2 + xy + 2y^2$ is an integer-valued form, but not an integer-matrix form.

• A quadratic form Q is positive-definite if $Q(\vec{x}) \ge 0$ for all $\vec{x} \in \mathbb{R}^n$, with equality if and only if $\vec{x} = \vec{0}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Classification

• In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Classification

• In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.

• In 2000, Bhargava determined that there are actually 204 integer-matrix quaternary forms that represent all positive integers.

(1日) (1日) (日)

Classification

• In 1948, Margaret Willerding proved that there were exactly 178 integer-matrix quaternary quadratic forms that represented all positive integers, and gave a list of these.

• In 2000, Bhargava determined that there are actually 204 integer-matrix quaternary forms that represent all positive integers.

• Apparently, Willerding had missed 36 forms, listed one twice, and listed 9 forms that fail to represent all positive integers.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Universality theorems

Theorem (The 15-theorem, Conway-Schneeberger)

A positive-definite, integer-matrix form Q represents every positive integer if and only if it represents 1, 2, 3, 5, 6, 7, 10, 14, and 15.

・ロン ・回 と ・ ヨン

Universality theorems

Theorem (The 15-theorem, Conway-Schneeberger)

A positive-definite, integer-matrix form Q represents every positive integer if and only if it represents 1, 2, 3, 5, 6, 7, 10, 14, and 15.

Theorem (The 290-theorem, Bhargava-Hanke)

A positive-definite, integer-valued form Q represents every positive integer if and only if it represents

 $1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, \\ 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.$

イロト イポト イヨト イヨト

Consequences

• Each of these results is sharp. The form

$$x^2 + 2y^2 + 4z^2 + 29w^2 + 145v^2 - xz - yz$$

represents every positive integer except 290.

ヘロト ヘ節ト ヘ油ト ヘ油ト

Consequences

• Each of these results is sharp. The form

$$x^2 + 2y^2 + 4z^2 + 29w^2 + 145v^2 - xz - yz$$

represents every positive integer except 290.

• If a form represents every positive integer less than 290, it represents every integer greater than 290.

- 4 同 ト 4 ヨ ト 4 ヨ ト
Consequences

• Each of these results is sharp. The form

$$x^2 + 2y^2 + 4z^2 + 29w^2 + 145v^2 - xz - yz$$

represents every positive integer except 290.

• If a form represents every positive integer less than 290, it represents every integer greater than 290.

• There are 6436 integer-valued quaternary forms that represent all positive integers.

(人間) (人) (人) (人)

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_0 \subseteq S$ with the property that

Q represents everything in $S \iff Q$ represents everything in S_0 .

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_0 \subseteq S$ with the property that

Q represents everything in $S \iff Q$ represents everything in S_0 .

• We say that a quadratic form Q is *S*-universal if Q represents everything in *S*.

More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique minimal finite subset $S_0 \subseteq S$ with the property that

Q represents everything in S \iff Q represents everything in S₀.

• We say that a quadratic form Q is *S*-universal if Q represents everything in *S*.

• Given a set S, how does one find the set S_0 ?

イロト イポト イヨト イヨト

Later results

Theorem (The 451-theorem, R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q represents all positive odds if and only if it represents

 $\begin{array}{l}1,3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,47,\\51,53,57,59,77,83,85,87,89,91,93,105,119,123,133,137,\\143,145,187,195,203,205,209,231,319,385, \textit{and}~451.\end{array}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Later results

Theorem (The 451-theorem, R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q represents all positive odds if and only if it represents

 $\begin{array}{l}1,3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,47,\\51,53,57,59,77,83,85,87,89,91,93,105,119,123,133,137,\\143,145,187,195,203,205,209,231,319,385, \textit{and}~451.\end{array}$

Theorem (DeBenedetto-R, to appear in *Ram. Journal*)

A positive-definite, integer-valued form Q represents every positive integer coprime to 3 if and only if it represents

 $\begin{matrix} 1,2,5,7,10,11,13,14,17,19,22,23,26,29,31,34,35\\ 37,38,46,47,55,58,62,70,94,110,119,145,203, \textit{and} 290. \end{matrix}$

Two exceptions

• It follows from the proof of the 15-theorem that if an integer-valued form Q represents all positive integers with one exception, then that exception must be 1, 2, 3, 5, 6, 7, 10, 14, or 15.

・ロン ・回 と ・ ヨ と ・

Two exceptions

• It follows from the proof of the 15-theorem that if an integer-valued form Q represents all positive integers with one exception, then that exception must be 1, 2, 3, 5, 6, 7, 10, 14, or 15.

Theorem (BDMSST, to appear in Proc. Amer. Math. Soc.)

If a positive-definite integer-matrix form Q represents all positive integers with two exceptions, the pair of exceptions $\{m, n\}$ must be one of the following: $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \{1, 7\}, \{1, 9\}, \{1, 10\}, \{1, 11\}, \{1, 13\}, \{1, 14\}, \{1, 15\}, \{1, 17\}, \{1, 19\}, \{1, 21\}, \{1, 23\}, \{1, 25\}, \{1, 30\}, \{1, 41\}, \{1, 55\}, \{2, 3\}, \{2, 5\}, \{2, 6\}, \{2, 8\}, \{2, 10\}, \{2, 11\}, \{2, 14\}, \{2, 15\}, \{2, 18\}, \{2, 22\}, \{2, 30\}, \{2, 38\}, \{2, 50\}, \{3, 6\}, \{3, 7\}, \{3, 11\}, \{3, 12\}, \{3, 19\}, \{3, 21\}, \{3, 27\}, \{3, 30\}, \{3, 35\}, \{3, 39\}, \{5, 7\}, \{5, 10\}, \{5, 13\}, \{5, 14\}, \{5, 20\}, \{5, 21\}, \{5, 29\}, \{5, 30\}, \{5, 35\}, \{5, 37\}, \{5, 125\}, \{6, 15\}, \{6, 54\}, \{7, 10\}, \{7, 15\}, \{7, 23\}, \{7, 28\}, \{7, 31\}, \{7, 39\}, \{7, 55\}, \{10, 15\}, \{10, 26\}, \{10, 40\}, \{10, 58\}, \{10, 250\}, \{14, 30\}, \{14, 56\}, \{14, 78\}.$

Lattices

• A *lattice* L of dimension n is a discrete subgroup of \mathbb{R}^n that is isomorphic to \mathbb{Z}^n .

・ロト ・回ト ・ヨト ・ヨト

Э

Lattices

• A *lattice* L of dimension n is a discrete subgroup of \mathbb{R}^n that is isomorphic to \mathbb{Z}^n .

• A lattice comes with a positive definite inner product $\langle\cdot,\cdot\rangle.$

イロト イヨト イヨト イヨト

Lattices

- A *lattice* L of dimension n is a discrete subgroup of \mathbb{R}^n that is isomorphic to \mathbb{Z}^n .
- A lattice comes with a positive definite inner product $\langle\cdot,\cdot\rangle.$
- Given a lattice L, the function $Q(\vec{x}) = \langle \vec{x}, \vec{x} \rangle$ is a quadratic form.

Lattices

- A *lattice* L of dimension n is a discrete subgroup of \mathbb{R}^n that is isomorphic to \mathbb{Z}^n .
- A lattice comes with a positive definite inner product $\langle\cdot,\cdot\rangle.$
- Given a lattice L, the function $Q(\vec{x}) = \langle \vec{x}, \vec{x} \rangle$ is a quadratic form.
- \bullet Conversely, given a quadratic form Q, one can associate to it a lattice $L\cong \mathbb{Z}^4$ by defining

$$\langle \vec{x}, \vec{y} \rangle = rac{1}{2} \left(Q(\vec{x}+\vec{y}) - Q(\vec{x}) - Q(\vec{y})
ight).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Escalation

• If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the *truant* of Q/L, the smallest element $t \in S$ that is not represented by Q.

Escalation

- If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the *truant* of Q/L, the smallest element $t \in S$ that is not represented by Q.
- An *escalation* of L is a lattice L' generated by L and a vector of norm t.

- 4 同下 4 ヨト 4 ヨト

Escalation

- If Q is a quadratic form (with corresponding lattice L) is not S-universal, we call the *truant* of Q/L, the smallest element $t \in S$ that is not represented by Q.
- An escalation of L is a lattice L' generated by L and a vector of norm t.
- An *escalator lattice* is a lattice obtained by repeatedly escalating the zero-dimensional lattice.

イロト イポト イヨト イヨト

Example (1/3)

• Let $S = \{1, 3, 5, 7, ...\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^2 .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example (1/3)

- Let $S = \{1, 3, 5, 7, ...\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^2 .
- This quadratic form has truant 3, and its escalations are $x^2 + axy + 3y^2$. To be positive-definite we must have $-3 \le a \le 3$.

Example (1/3)

- Let $S = \{1, 3, 5, 7, ...\}$ be the set of odd numbers. There is a unique one-dimensional escalator lattice corresponding to x^2 .
- This quadratic form has truant 3, and its escalations are $x^2 + axy + 3y^2$. To be positive-definite we must have $-3 \le a \le 3$.
- Each of $x^2 + 3y^2$, $x^2 + xy + 3y^2$, $x^2 + 2xy + 3y^2$ and $x^2 + 3xy + 3y^2$ has truant 5 or 7.

• Escalating the four forms listed previously gives 73 three-dimensional lattices.

・ロト ・回ト ・ヨト ・ヨト

Example (2/3)

• Escalating the four forms listed previously gives 73 three-dimensional lattices.

 \bullet Of these, 50 of these fail to represent some odd number \leq 73. The remaining 23 represent all odd numbers \leq 10^6.

Example (2/3)

• Escalating the four forms listed previously gives 73 three-dimensional lattices.

 \bullet Of these, 50 of these fail to represent some odd number \leq 73. The remaining 23 represent all odd numbers \leq 10^6.

• Escalating the 50 lattices that are definitely not *S*-universal yields 24312 four-dimensional escalator lattices.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Example (3/3)

• It can be tricky to determine whether a lattice is S-universal or not.

Э

Example (3/3)

- It can be tricky to determine whether a lattice is S-universal or not.
- In particular, it is not known whether or not

$$x^{2} + 2y^{2} + 5z^{2} + xy$$

$$x^{2} + 3y^{2} + 6z^{2} + xy + 2yz$$

$$x^{2} + 3y^{2} + 7z^{2} + xy + xz$$

each represents all odd numbers.

・ロン ・回 と ・ ヨン

Example (3/3)

- It can be tricky to determine whether a lattice is S-universal or not.
- In particular, it is not known whether or not

$$x^{2} + 2y^{2} + 5z^{2} + xy$$

$$x^{2} + 3y^{2} + 6z^{2} + xy + 2yz$$

$$x^{2} + 3y^{2} + 7z^{2} + xy + xz$$

each represents all odd numbers.

• One can show that GRH implies that each of the above three forms represents all odd numbers.

S-universal escalators

• Fact 1: A lattice L is S-universal if and only if it has a sublattice L' which is an S-universal escalator lattice.

・ロト ・回ト ・ヨト ・ヨト

S-universal escalators

• Fact 1: A lattice L is S-universal if and only if it has a sublattice L' which is an S-universal escalator lattice.

• Proof: Suppose that *L* is *S*-universal. If $S = \{t_1, t_2, t_3, ...\}$, let L_1 be a sublattice of *L* generated by a vector of norm t_1 . For $i \ge 2$, let L_i be a lattice containing L_{i-1} that represents t_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

S-universal escalators

• Fact 1: A lattice L is S-universal if and only if it has a sublattice L' which is an S-universal escalator lattice.

• Proof: Suppose that *L* is *S*-universal. If $S = \{t_1, t_2, t_3, ...\}$, let L_1 be a sublattice of *L* generated by a vector of norm t_1 . For $i \ge 2$, let L_i be a lattice containing L_{i-1} that represents t_i .

• The ascending chain $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots \subseteq L$ must stabilize. It stabilizes in an *S*-universal escalator lattice.

イロト イポト イヨト イヨト

More about escalators

• Fact 2: The set S_0 in Bhargava's theorem is precisely the set of truants of escalator lattices.

3

More about escalators

• Fact 2: The set S_0 in Bhargava's theorem is precisely the set of truants of escalator lattices.

• The hard part is, given a quadratic form Q, determining whether it is *S*-universal or not.

More about escalators

• Fact 2: The set S_0 in Bhargava's theorem is precisely the set of truants of escalator lattices.

• The hard part is, given a quadratic form Q, determining whether it is *S*-universal or not.

• Exercise 1: Suppose that Q is a positive-definite quadratic form. Assume that Q represents 2, and Q also represents 3. Show that Q also represents 818.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

More about escalators

• Fact 2: The set S_0 in Bhargava's theorem is precisely the set of truants of escalator lattices.

• The hard part is, given a quadratic form Q, determining whether it is S-universal or not.

• Exercise 1: Suppose that Q is a positive-definite quadratic form. Assume that Q represents 2, and Q also represents 3. Show that Q also represents 818.

• Exercise 2: Let $S = \mathbb{N}$ be the set of positive integers. Show that there is no positive-definite S-universal ternary quadratic form.

・ 同 ト ・ ヨ ト ・ ヨ ト

Necessary conditions

• In order for there to be a solution to $Q(x_1, x_2, \dots, x_r) = n$ with $x_i \in \mathbb{Z}$,

< ロ > < 四 > < 臣 > < 臣 > 、

Э

Necessary conditions

• In order for there to be a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}$, it must be that for all $m \ge 1$, there is a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}/m\mathbb{Z}$.

・ロン ・回 と ・ヨン ・ヨン

Necessary conditions

• In order for there to be a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}$, it must be that for all $m \ge 1$, there is a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}/m\mathbb{Z}$.

• For example, $Q(x, y, z, w) = x^2 + y^2 + z^2 + 8w^2$ does not represent any $n \equiv 7 \pmod{8}$ because there are no solutions to

$$7 \equiv x^2 + y^2 + z^2 + 8w^2 \pmod{8}$$
.

イロト イポト イヨト イヨト

Necessary conditions

• In order for there to be a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}$, it must be that for all $m \ge 1$, there is a solution to $Q(x_1, x_2, ..., x_r) = n$ with $x_i \in \mathbb{Z}/m\mathbb{Z}$.

• For example, $Q(x, y, z, w) = x^2 + y^2 + z^2 + 8w^2$ does not represent any $n \equiv 7 \pmod{8}$ because there are no solutions to

$$7 \equiv x^2 + y^2 + z^2 + 8w^2 \pmod{8}$$
.

• It turns out that Q represents every positive integer that is not congruent to 7 (mod 8).

イロト イポト イヨト イヨト

p-adic numbers

• For $x \in \mathbb{Q}$ and a prime number p, write $x = p^k \cdot \frac{a}{b}$ where gcd(a, b) = 1 and $p \nmid a$ and $p \nmid b$.

ヘロン 人間 とくほど 人間 とう

3
p-adic numbers

• For $x \in \mathbb{Q}$ and a prime number p, write $x = p^k \cdot \frac{a}{b}$ where gcd(a, b) = 1 and $p \nmid a$ and $p \nmid b$.

• Define
$$|x|_p = p^{-k}$$
. Define a metric on \mathbb{Q} by $d(x, y) = |x - y|_p$.

ヘロン 人間 とくほど 人間 とう

3

p-adic numbers

- For $x \in \mathbb{Q}$ and a prime number p, write $x = p^k \cdot \frac{a}{b}$ where gcd(a, b) = 1 and $p \nmid a$ and $p \nmid b$.
- Define $|x|_p = p^{-k}$. Define a metric on \mathbb{Q} by $d(x, y) = |x y|_p$.
- Let \mathbb{Q}_p be the completion of \mathbb{Q} with respect to this metric and $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\}.$

イロト イポト イヨト イヨト 二日

Local stuff

• We say that a quadratic form Q locally represents n > 0 if, for all primes p, there is a solution to $Q(\vec{x}) = n$ with $\vec{x} \in \mathbb{Z}_p^r$.

・ロト ・回ト ・ヨト ・ヨト

Local stuff

• We say that a quadratic form Q locally represents n > 0 if, for all primes p, there is a solution to $Q(\vec{x}) = n$ with $\vec{x} \in \mathbb{Z}_p^r$.

• We say that Q_1 and Q_2 are *locally equivalent* if $Q_i = \frac{1}{2}\vec{x}^T A_i \vec{x}$ and for all primes p, there is a matrix $M \in GL_r(\mathbb{Z}_p)$ so that

 $MA_1M^T = A_2.$

イロト イポト イヨト イヨト

Local stuff

• We say that a quadratic form Q locally represents n > 0 if, for all primes p, there is a solution to $Q(\vec{x}) = n$ with $\vec{x} \in \mathbb{Z}_p^r$.

• We say that Q_1 and Q_2 are *locally equivalent* if $Q_i = \frac{1}{2}\vec{x}^T A_i \vec{x}$ and for all primes p, there is a matrix $M \in GL_r(\mathbb{Z}_p)$ so that

$$MA_1M^T = A_2.$$

Theorem (Hasse-Minkowski)

Suppose that Q is a positive-definite quadratic form and n is locally represented by Q. Then there is some $\vec{x} \in \mathbb{Q}^r$ so that $Q(\vec{x}) = n$.

イロト イポト イヨト イヨト

The genus

• If Q is a positive-definite quadratic form, we let Gen(Q) denote the set of QFs that are locally equivalent to Q.

The genus

• If Q is a positive-definite quadratic form, we let Gen(Q) denote the set of QFs that are locally equivalent to Q.

Theorem

The set Gen(Q) is finite.

The genus

• If Q is a positive-definite quadratic form, we let Gen(Q) denote the set of QFs that are locally equivalent to Q.

Theorem

The set Gen(Q) is finite.

Theorem

If n is locally represented by Q, then there is at least one form $R \in \text{Gen}(Q)$ so that R represents Q.

Example

• Let $Q_1 = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then Gen (Q_1) consists of two forms.

イロン イヨン イヨン イヨン

Э

Example

- Let $Q_1 = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then Gen (Q_1) consists of two forms.
- The other form is $Q_2 = x^2 + xy + y^2 + 8z^2$.

・ロト ・聞ト ・ヨト ・ヨト

3

Example

- Let $Q_1 = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then Gen (Q_1) consists of two forms.
- The other form is $Q_2 = x^2 + xy + y^2 + 8z^2$.

• Note: If there is a genus Gen(Q) consisting of a single form, that form is guaranteed to represent all *n* that are locally represented by Q.

소리가 소문가 소문가 소문가

3

Tartakowski's theorem

• The Hasse-Minkowski theorem does not guarantee that n is actually represented by Q.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Tartakowski's theorem

• The Hasse-Minkowski theorem does not guarantee that n is actually represented by Q.

Theorem (Tartakowski)

Suppose that Q is a positive-definite quadratic form in $r \ge 5$ variables. Then every sufficiently large locally represented positive integer is represented by Q.

(1日) (1日) (日)

What happens for r = 4?

• Let $Q(x, y, z, w) = x^2 + y^2 + 7z^2 + 7w^2$. Then Q locally represents every positive integer.

・ロン ・回 と ・ ヨン

What happens for r = 4?

• Let $Q(x, y, z, w) = x^2 + y^2 + 7z^2 + 7w^2$. Then Q locally represents every positive integer.

• However, if $Q(x, y, z, w) \equiv 0 \pmod{49}$, then $x \equiv y \equiv z \equiv w \pmod{7}$.

イロト イポト イヨト イヨト

What happens for r = 4?

• Let $Q(x, y, z, w) = x^2 + y^2 + 7z^2 + 7w^2$. Then Q locally represents every positive integer.

• However, if $Q(x, y, z, w) \equiv 0 \pmod{49}$, then $x \equiv y \equiv z \equiv w \pmod{7}$.

• It follows that Q does not represent $3 \cdot 49^n$ for any $n \ge 0$.

イロト イポト イヨト イヨト

Anisotropic primes

• We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_p^r$ and $Q(\vec{x}) = 0$, then $\vec{x} = \vec{0}$.

Anisotropic primes

• We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_p^r$ and $Q(\vec{x}) = 0$, then $\vec{x} = \vec{0}$.

• If Q is anisotropic at p, then $r \leq 4$.

Anisotropic primes

• We say that a quadratic form Q is anisotropic at the prime p if whenever $\vec{x} \in \mathbb{Z}_p^r$ and $Q(\vec{x}) = 0$, then $\vec{x} = \vec{0}$.

• If Q is anisotropic at p, then $r \leq 4$.

Theorem

Suppose that Q is a four-variable quadratic form. Then there is a constant C(Q) so that if n > C(Q) is locally represented by Q, then either n is represented by Q, or there is an anisotropic prime p so that $p^2|n$ and n/p^2 is not represented by Q.

イロト イポト イヨト イヨト

A three-variable phenomenon

• Let $Q(x, y, z) = 3x^2 + 4y^2 + 9z^2$.

・ロト ・回ト ・ヨト ・ヨト

A three-variable phenomenon

- Let $Q(x, y, z) = 3x^2 + 4y^2 + 9z^2$.
- This form locally represents *n* provided $n \not\equiv 2 \pmod{4}$ and $n \not\equiv 2 \cdot 3^{\alpha-1} \pmod{3^{\alpha}}$ for any α .

A three-variable phenomenon

- Let $Q(x, y, z) = 3x^2 + 4y^2 + 9z^2$.
- This form locally represents *n* provided $n \not\equiv 2 \pmod{4}$ and $n \not\equiv 2 \cdot 3^{\alpha-1} \pmod{3^{\alpha}}$ for any α .
- Any perfect square is locally represented by Q.

イロト イポト イヨト イヨト

A three-variable phenomenon

- Let $Q(x, y, z) = 3x^2 + 4y^2 + 9z^2$.
- This form locally represents *n* provided $n \not\equiv 2 \pmod{4}$ and $n \not\equiv 2 \cdot 3^{\alpha-1} \pmod{3^{\alpha}}$ for any α .
- Any perfect square is locally represented by Q.

• However Q does not represent n^2 if all prime factors of n are $\equiv 1 \pmod{3}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How many local solutions?

• We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How many local solutions?

• We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.

• If Q is a form, n is a positive integer, and p is a prime, define

$$\beta_p(n) = \lim_{U \to \{n\}} \frac{\operatorname{Vol}(Q^{-1}(U))}{\operatorname{Vol}(U)}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

How many local solutions?

• We can gather more precise local information to try to estimate the number of times an integer n "should" be represented by Q.

• If Q is a form, n is a positive integer, and p is a prime, define

$$eta_p(n) = \lim_{U \to \{n\}} rac{\operatorname{Vol}(Q^{-1}(U))}{\operatorname{Vol}(U)}.$$

• More concretely, this is

k

$$\beta_p(n) = \lim_{v \to \infty} \frac{\#\{\vec{x} \in (\mathbb{Z}/p^v\mathbb{Z})^r : Q(\vec{x}) \equiv n \pmod{p^v}\}}{p^{(r-1)v}}.$$

Local densities

• If
$$p = \infty$$
, and $Q = \frac{1}{2}\vec{x}^T A \vec{x}$, then

$$eta_\infty(n) = rac{4\pi^2 n}{\sqrt{\det(A)}}.$$

・ロン ・部と ・ヨン ・ヨン

Э

Local densities

• If
$$p = \infty$$
, and $Q = \frac{1}{2}\vec{x}^T A \vec{x}$, then

$$eta_\infty(n) = rac{4\pi^2 n}{\sqrt{\det(A)}}.$$

• Computing $\beta_p(n)$ can be tricky in general. There are explicit formulas for the $\beta_p(n)$ given in Yang's 1998 paper in the Journal of Number Theory.

ヘロト ヘ節ト ヘヨト ヘヨト

Local densities

• If
$$p = \infty$$
, and $Q = \frac{1}{2}\vec{x}^T A \vec{x}$, then

$$eta_\infty(n) = rac{4\pi^2 n}{\sqrt{\det(A)}}.$$

• Computing $\beta_p(n)$ can be tricky in general. There are explicit formulas for the $\beta_p(n)$ given in Yang's 1998 paper in the Journal of Number Theory.

• The earliest work on quadratic forms was done via the circle method, and

$$\prod_{p<\infty}\beta_p(n)$$

is the "main term" approximation for $r_Q(n)$.

Definition

• A quadratic form Q is called *regular* if every locally represented integer is represented.

・ロト ・回ト ・ヨト ・ヨト

Э

Definition

• A quadratic form Q is called *regular* if every locally represented integer is represented.

• As noted above, if Gen(Q) consists of only one class, then Q is automatically regular.

Definition

• A quadratic form Q is called *regular* if every locally represented integer is represented.

• As noted above, if Gen(Q) consists of only one class, then Q is automatically regular.

Theorem (Kaplansky, 1995) The form $Q = x^2 + 3y^2 + 3z^2 + xy + 3yz$ is regular.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proof of Kaplansky's theorem (1/2)

Lemma

If $n = x^2 + xy + y^2$, then there are integers r and s so that $n = r^2 + 3s^2$.

ヘロト 人間ト 人造ト 人造ト

3

Proof of Kaplansky's theorem (1/2)

Lemma

If $n = x^2 + xy + y^2$, then there are integers r and s so that $n = r^2 + 3s^2$.

• If one of x or y is even (say x with x = 2k), we have $n = 4k^2 + 2ky + y^2 = (k + y)^2 + 3k^2$.

・ロト ・回ト ・ヨト ・

Proof of Kaplansky's theorem (1/2)

Lemma

If $n = x^2 + xy + y^2$, then there are integers r and s so that $n = r^2 + 3s^2$.

- If one of x or y is even (say x with x = 2k), we have $n = 4k^2 + 2ky + y^2 = (k + y)^2 + 3k^2$.
- If x and y are both odd, we rewrite $n = x^2 + xy + y^2 = (x+y)^2 + (x+y)(-x) + (-x)^2 = A^2 + AB + B^2.$

소리가 소문가 소문가 소문가

Proof of Kaplansky's theorem (2/2)

• Assume that *n* is locally represented by $Q = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then either *n* is represented by *Q*, or by $R = x^2 + xy + y^2 + 8z^2$, the other form in Gen(*Q*).

- 4 回 ト 4 ヨ ト 4 ヨ ト
Proof of Kaplansky's theorem (2/2)

• Assume that *n* is locally represented by $Q = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then either *n* is represented by *Q*, or by $R = x^2 + xy + y^2 + 8z^2$, the other form in Gen(*Q*).

• Assume that $R = x^2 + xy + y^2 + 8z^2$ represents *n*. Then, there are $r, s \in \mathbb{Z}$ so that $n = r^2 + 3s^2 + 8z^2$.

マロト イヨト イヨト

Proof of Kaplansky's theorem (2/2)

• Assume that *n* is locally represented by $Q = x^2 + 3y^2 + 3z^2 + xy + 3yz$. Then either *n* is represented by *Q*, or by $R = x^2 + xy + y^2 + 8z^2$, the other form in Gen(*Q*).

• Assume that $R = x^2 + xy + y^2 + 8z^2$ represents *n*. Then, there are $r, s \in \mathbb{Z}$ so that $n = r^2 + 3s^2 + 8z^2$.

• A simple calculation shows that Q(r - z, 2z, s - z) = n. This proves that Q is regular.

・ロン ・回 と ・ ヨ と ・

Regular ternary quadratic forms

• In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.

Regular ternary quadratic forms

• In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.

 \bullet Of their 913 candidates, they proved that 891 of them were regular.

(1日) (1日) (日)

Regular ternary quadratic forms

• In 1997, Jagy, Kaplansky, and Schiemann proved that there are at most 913 regular ternary quadratic forms.

 \bullet Of their 913 candidates, they proved that 891 of them were regular.

• In 2011, Oh proved that 8 more of their candidates were regular. In 2014, Lemke-Oliver proved the remaining 14 were regular assuming GRH.

(1日) (1日) (日)

Using regular ternary forms

• Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.

イロト イポト イヨト イヨト

Using regular ternary forms

• Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.

- \bullet Let L be the quaternary lattice. Suppose that L has a sublattice L' so that
 - L' corresponds to a regular ternary quadratic form,

向下 イヨト イヨト

Using regular ternary forms

• Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.

- \bullet Let L be the quaternary lattice. Suppose that L has a sublattice L' so that
 - L' corresponds to a regular ternary quadratic form,
 - $L' \oplus (L')^{\perp}$ locally represents everything in S.

・ 同 ト ・ ヨ ト ・ ヨ ト

Using regular ternary forms

• Sometimes, a regular ternary form T can be used to determine which integers in S are represented by a quaternary form Q.

- \bullet Let L be the quaternary lattice. Suppose that L has a sublattice L' so that
 - L' corresponds to a regular ternary quadratic form,
 - $L' \oplus (L')^{\perp}$ locally represents everything in S.

• Then a simple calculation will determine the integers in S that are represented by L.

(人間) (人) (人) (人)

Example I

• Let
$$Q(x, y, z, w) = x^2 + y^2 + yz + 2z^2 + 7w^2$$
. The form $T(x, y, z) = x^2 + y^2 + yz + 2z^2$ is regular.

・ロン ・部と ・ヨン ・ヨン

Э

Example I

• Let
$$Q(x, y, z, w) = x^2 + y^2 + yz + 2z^2 + 7w^2$$
. The form $T(x, y, z) = x^2 + y^2 + yz + 2z^2$ is regular.

• The form T represents all positive integers except those $\equiv 21, 35, 42 \pmod{49}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Example I

• Let
$$Q(x, y, z, w) = x^2 + y^2 + yz + 2z^2 + 7w^2$$
. The form $T(x, y, z) = x^2 + y^2 + yz + 2z^2$ is regular.

• The form T represents all positive integers except those $\equiv 21, 35, 42 \pmod{49}$.

• Since

$$21 \equiv 7 \cdot 1^2 + 14 \pmod{49}$$

$$35 \equiv 7 \cdot 2^2 + 7 \pmod{49}$$

$$42 \equiv 7 \cdot 2^2 + 14 \pmod{49},$$

Q represents all positive integers.

Example II

• Let $Q(x, y, z, w) = x^2 + xy + 3y^2 + 4z^2 + 77w^2$. The form $T(x, y, z) = x^2 + xy + 3y^2 + 4z^2$ is regular.

・ロン ・回 と ・ ヨ と ・

3

Example II

• Let $Q(x, y, z, w) = x^2 + xy + 3y^2 + 4z^2 + 77w^2$. The form $T(x, y, z) = x^2 + xy + 3y^2 + 4z^2$ is regular.

• The form T is regular, and fails to represent only those n with $n \equiv 2 \pmod{4}$ and $n = 11^{\alpha}\beta$ with α odd and $\left(\frac{\beta}{11}\right) = -1$.

イロト イポト イヨト イヨト

Example II

• Let $Q(x, y, z, w) = x^2 + xy + 3y^2 + 4z^2 + 77w^2$. The form $T(x, y, z) = x^2 + xy + 3y^2 + 4z^2$ is regular.

• The form T is regular, and fails to represent only those n with $n \equiv 2 \pmod{4}$ and $n = 11^{\alpha}\beta$ with α odd and $\left(\frac{\beta}{11}\right) = -1$.

 \bullet A computer program needs to check 235 residue classes. It finds that Q represents all odd numbers except

143, 187, 231, 385, 451, 627, 935, 1111, 1419, 1903, and 2387.

Proving the 451-theorem

• This method of using regular forms is a key method to proving the 451-theorem.

Proving the 451-theorem

• This method of using regular forms is a key method to proving the 451-theorem.

• There are 24312 four-dimensional escalators, and one must understand the odd integers represented by each.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proving the 451-theorem

• This method of using regular forms is a key method to proving the 451-theorem.

• There are 24312 four-dimensional escalators, and one must understand the odd integers represented by each.

• This method of regular ternary forms can be used to handle about 7000 of the 24312.

・ 同 ト ・ ヨ ト ・ ヨ ト

An exercise

• The form $T(x, y, z) = x^2 + y^2 + z^2$ is regular. It represents all positive integers not of the form $4^k(8\ell + 7)$.

An exercise

• The form $T(x, y, z) = x^2 + y^2 + z^2$ is regular. It represents all positive integers not of the form $4^k(8\ell + 7)$.

• Exercise 3: Let p be a prime number and $Q(x, y, z, w) = x^2 + py^2 + pz^2 + pw^2$.

An exercise

• The form $T(x, y, z) = x^2 + y^2 + z^2$ is regular. It represents all positive integers not of the form $4^k(8\ell + 7)$.

• Exercise 3: Let p be a prime number and $Q(x, y, z, w) = x^2 + py^2 + pz^2 + pw^2$.

• Show that if $p \not\equiv 1 \pmod{8}$, then every positive integer *n* which is congruent to a square mod *p* and n > p(4p - 5) is represented by *Q*.

An exercise

• The form $T(x, y, z) = x^2 + y^2 + z^2$ is regular. It represents all positive integers not of the form $4^k(8\ell + 7)$.

• Exercise 3: Let p be a prime number and $Q(x, y, z, w) = x^2 + py^2 + pz^2 + pw^2$.

• Show that if $p \not\equiv 1 \pmod{8}$, then every positive integer *n* which is congruent to a square mod *p* and n > p(4p - 5) is represented by *Q*.

• Show that if $p \equiv 3 \pmod{8}$, then n = p(4p - 5) is not represented by Q.

イロト イポト イヨト イヨト