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History

• In 1770, Lagrange proved that every positive integer can be
written as a sum of four squares.

• For example

234567 = 3812 + 2992 + 22 + 12.

• Q: What other expressions represent all positive integers?
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Ramanujan

• In 1916, Ramanujan claimed that there are
precisely 55 4-tuples of positive integers
(a, b, c , d) so that every positive integer is of
the form

ax2 + by2 + cz2 + dw2.

• In 1927, Dickson proved Ramanujan’s claim
(modulo one error). The form
x2 + 2y2 + 5z2 + 5w2 represents every positive
integer except 15.
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Definitions (1/2)

• A quadratic form Q(~x) is called integer-matrix if

Q(~x) = ~xTA~x

where A is a matrix with integer entries.

• This means the cross terms must be even.

• The form x2 + 2xy + 4y2 is an integer-matrix form.
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Definitions (2/2)

• An integer-valued quadratic form Q can be written in the form

Q(~x) =
1

2
~xTA~x

where A has integer entries and even diagonal entries.

• The form x2 + xy + 2y2 is an integer-valued form, but not an
integer-matrix form.

• A quadratic form Q is positive-definite if Q(~x) ≥ 0 for all
~x ∈ Rn, with equality if and only if ~x = ~0.
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Classification

• In 1948, Margaret Willerding proved that there were exactly 178
integer-matrix quaternary quadratic forms that represented all
positive integers, and gave a list of these.

• In 2000, Bhargava determined that there are actually 204
integer-matrix quaternary forms that represent all positive integers.

• Apparently, Willerding had missed 36 forms, listed one twice, and
listed 9 forms that fail to represent all positive integers.
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Universality theorems

Theorem (The 15-theorem, Conway-Schneeberger)

A positive-definite, integer-matrix form Q represents every positive
integer if and only if it represents 1, 2, 3, 5, 6, 7, 10, 14, and 15.

Theorem (The 290-theorem, Bhargava-Hanke)

A positive-definite, integer-valued form Q represents every positive
integer if and only if it represents

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29,

30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290.
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Consequences

• Each of these results is sharp. The form

x2 + 2y2 + 4z2 + 29w2 + 145v2 − xz − yz

represents every positive integer except 290.

• If a form represents every positive integer less than 290, it
represents every integer greater than 290.

• There are 6436 integer-valued quaternary forms that represent all
positive integers.
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More generality

Theorem (Bhargava)

Given an infinite set S of positive integers, there is a unique
minimal finite subset S0 ⊆ S with the property that

Q represents everything in S ⇐⇒ Q represents everything in S0.

• We say that a quadratic form Q is S-universal if Q represents
everything in S .

• Given a set S , how does one find the set S0?
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Later results

Theorem (The 451-theorem, R, 2014)

Assume GRH. Then a positive-definite, integer-valued form Q
represents all positive odds if and only if it represents

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 47,

51, 53, 57, 59, 77, 83, 85, 87, 89, 91, 93, 105, 119, 123, 133, 137,

143, 145, 187, 195, 203, 205, 209, 231, 319, 385, and 451.

Theorem (DeBenedetto-R, to appear in Ram. Journal)

A positive-definite, integer-valued form Q represents every positive
integer coprime to 3 if and only if it represents

1, 2, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 35

37, 38, 46, 47, 55, 58, 62, 70, 94, 110, 119, 145, 203, and 290.
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Two exceptions

• It follows from the proof of the 15-theorem that if an
integer-valued form Q represents all positive integers with one
exception, then that exception must be 1, 2, 3, 5, 6, 7, 10, 14, or
15.

Theorem (BDMSST, to appear in Proc. Amer. Math. Soc.)

If a positive-definite integer-matrix form Q represents all positive
integers with two exceptions, the pair of exceptions {m, n} must
be one of the following: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 9}, {1, 10},

{1, 11}, {1, 13}, {1, 14}, {1, 15}, {1, 17}, {1, 19}, {1, 21}, {1, 23}, {1, 25}, {1, 30}, {1, 41}, {1, 55},

{2, 3}, {2, 5}, {2, 6}, {2, 8}, {2, 10}, {2, 11}, {2, 14}, {2, 15}, {2, 18}, {2, 22}, {2, 30}, {2, 38}, {2, 50},

{3, 6}, {3, 7}, {3, 11}, {3, 12}, {3, 19}, {3, 21}, {3, 27}, {3, 30}, {3, 35}, {3, 39}, {5, 7}, {5, 10},

{5, 13}, {5, 14}, {5, 20}, {5, 21}, {5, 29}, {5, 30}, {5, 35}, {5, 37}, {5, 42}, {5, 125}, {6, 15}, {6, 54},

{7, 10}, {7, 15}, {7, 23}, {7, 28}, {7, 31}, {7, 39}, {7, 55}, {10, 15}, {10, 26}, {10, 40}, {10, 58},

{10, 250}, {14, 30}, {14, 56}, {14, 78}.
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Lattices

• A lattice L of dimension n is a discrete subgroup of Rn that is
isomorphic to Zn.

• A lattice comes with a positive definite inner product 〈·, ·〉.

• Given a lattice L, the function Q(~x) = 〈~x , ~x〉 is a quadratic form.

• Conversely, given a quadratic form Q, one can associate to it a
lattice L ∼= Z4 by defining

〈~x , ~y〉 =
1

2
(Q(~x + ~y)− Q(~x)− Q(~y)) .
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Escalation

• If Q is a quadratic form (with corresponding lattice L) is not
S-universal, we call the truant of Q/L, the smallest element t ∈ S
that is not represented by Q.

• An escalation of L is a lattice L′ generated by L and a vector of
norm t.

• An escalator lattice is a lattice obtained by repeatedly escalating
the zero-dimensional lattice.
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Example (1/3)

• Let S = {1, 3, 5, 7, . . .} be the set of odd numbers. There is a
unique one-dimensional escalator lattice corresponding to x2.

• This quadratic form has truant 3, and its escalations are
x2 + axy + 3y2. To be positive-definite we must have −3 ≤ a ≤ 3.

• Each of x2 + 3y2, x2 + xy + 3y2, x2 + 2xy + 3y2 and
x2 + 3xy + 3y2 has truant 5 or 7.
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x2 + 3xy + 3y2 has truant 5 or 7.
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Example (2/3)

• Escalating the four forms listed previously gives 73
three-dimensional lattices.

• Of these, 50 of these fail to represent some odd number ≤ 73.
The remaining 23 represent all odd numbers ≤ 106.

• Escalating the 50 lattices that are definitely not S-universal
yields 24312 four-dimensional escalator lattices.
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Example (3/3)

• It can be tricky to determine whether a lattice is S-universal or
not.

• In particular, it is not known whether or not

x2 + 2y2 + 5z2 + xy

x2 + 3y2 + 6z2 + xy + 2yz

x2 + 3y2 + 7z2 + xy + xz

each represents all odd numbers.

• One can show that GRH implies that each of the above three
forms represents all odd numbers.
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S-universal escalators

• Fact 1: A lattice L is S-universal if and only if it has a sublattice
L′ which is an S-universal escalator lattice.

• Proof: Suppose that L is S-universal. If S = {t1, t2, t3, . . .}, let
L1 be a sublattice of L generated by a vector of norm t1. For
i ≥ 2, let Li be a lattice containing Li−1 that represents ti .

• The ascending chain L1 ⊆ L2 ⊆ L3 ⊆ · · · ⊆ L must stabilize. It
stabilizes in an S-universal escalator lattice.
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More about escalators

• Fact 2: The set S0 in Bhargava’s theorem is precisely the set of
truants of escalator lattices.

• The hard part is, given a quadratic form Q, determining whether
it is S-universal or not.

• Exercise 1: Suppose that Q is a positive-definite quadratic form.
Assume that Q represents 2, and Q also represents 3. Show that
Q also represents 818.

• Exercise 2: Let S = N be the set of positive integers. Show that
there is no positive-definite S-universal ternary quadratic form.
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Necessary conditions

• In order for there to be a solution to Q(x1, x2, . . . , xr ) = n with
xi ∈ Z,

it must be that for all m ≥ 1, there is a solution to
Q(x1, x2, . . . , xr ) = n with xi ∈ Z/mZ.

• For example, Q(x , y , z ,w) = x2 + y2 + z2 + 8w2 does not
represent any n ≡ 7 (mod 8) because there are no solutions to

7 ≡ x2 + y2 + z2 + 8w2 (mod 8).

• It turns out that Q represents every positive integer that is not
congruent to 7 (mod 8).
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p-adic numbers

• For x ∈ Q and a prime number p, write x = pk · ab where
gcd(a, b) = 1 and p - a and p - b.

• Define |x |p = p−k . Define a metric on Q by d(x , y) = |x − y |p.

• Let Qp be the completion of Q with respect to this metric and
Zp = {x ∈ Qp : |x |p ≤ 1}.
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Local stuff

• We say that a quadratic form Q locally represents n > 0 if, for
all primes p, there is a solution to Q(~x) = n with ~x ∈ Zr

p.

• We say that Q1 and Q2 are locally equivalent if Qi = 1
2~x

TAi~x
and for all primes p, there is a matrix M ∈ GLr (Zp) so that

MA1M
T = A2.

Theorem (Hasse-Minkowski)

Suppose that Q is a positive-definite quadratic form and n is locally
represented by Q. Then there is some ~x ∈ Qr so that Q(~x) = n.
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The genus

• If Q is a positive-definite quadratic form, we let Gen(Q) denote
the set of QFs that are locally equivalent to Q.

Theorem

The set Gen(Q) is finite.

Theorem

If n is locally represented by Q, then there is at least one form
R ∈ Gen(Q) so that R represents Q.
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Example

• Let Q1 = x2 + 3y2 + 3z2 + xy + 3yz . Then Gen(Q1) consists of
two forms.

• The other form is Q2 = x2 + xy + y2 + 8z2.

• Note: If there is a genus Gen(Q) consisting of a single form,
that form is guaranteed to represent all n that are locally
represented by Q.
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Tartakowski’s theorem

• The Hasse-Minkowski theorem does not guarantee that n is
actually represented by Q.

Theorem (Tartakowski)

Suppose that Q is a positive-definite quadratic form in r ≥ 5
variables. Then every sufficiently large locally represented positive
integer is represented by Q.
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What happens for r = 4?

• Let Q(x , y , z ,w) = x2 + y2 + 7z2 + 7w2. Then Q locally
represents every positive integer.

• However, if Q(x , y , z ,w) ≡ 0 (mod 49), then x ≡ y ≡ z ≡ w
(mod 7).

• It follows that Q does not represent 3 · 49n for any n ≥ 0.
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Anisotropic primes

• We say that a quadratic form Q is anisotropic at the prime p if
whenever ~x ∈ Zr

p and Q(~x) = 0, then ~x = ~0.

• If Q is anisotropic at p, then r ≤ 4.

Theorem

Suppose that Q is a four-variable quadratic form. Then there is a
constant C (Q) so that if n > C (Q) is locally represented by Q,
then either n is represented by Q, or there is an anisotropic prime
p so that p2|n and n/p2 is not represented by Q.
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A three-variable phenomenon

• Let Q(x , y , z) = 3x2 + 4y2 + 9z2.

• This form locally represents n provided n 6≡ 2 (mod 4) and
n 6≡ 2 · 3α−1 (mod 3α) for any α.

• Any perfect square is locally represented by Q.

• However Q does not represent n2 if all prime factors of n are ≡ 1
(mod 3).
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How many local solutions?

• We can gather more precise local information to try to estimate
the number of times an integer n “should” be represented by Q.

• If Q is a form, n is a positive integer, and p is a prime, define

βp(n) = lim
U→{n}

Vol(Q−1(U))

Vol(U)
.

• More concretely, this is

βp(n) = lim
v→∞

#{~x ∈ (Z/pvZ)r : Q(~x) ≡ n (mod pv )

p(r−1)v
.
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Local densities

• If p =∞, and Q = 1
2~x

TA~x , then

β∞(n) =
4π2n√
det(A)

.

• Computing βp(n) can be tricky in general. There are explicit
formulas for the βp(n) given in Yang’s 1998 paper in the Journal of
Number Theory.

• The earliest work on quadratic forms was done via the circle
method, and ∏

p≤∞
βp(n)

is the “main term” approximation for rQ(n).
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Definition

• A quadratic form Q is called regular if every locally represented
integer is represented.

• As noted above, if Gen(Q) consists of only one class, then Q is
automatically regular.

Theorem (Kaplansky, 1995)

The form Q = x2 + 3y2 + 3z2 + xy + 3yz is regular.
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Proof of Kaplansky’s theorem (1/2)

Lemma

If n = x2 + xy + y2, then there are integers r and s so that
n = r2 + 3s2.

• If one of x or y is even (say x with x = 2k), we have
n = 4k2 + 2ky + y2 = (k + y)2 + 3k2.

• If x and y are both odd, we rewrite
n = x2+xy +y2 = (x+y)2+(x+y)(−x)+(−x)2 = A2+AB+B2.
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Proof of Kaplansky’s theorem (2/2)

• Assume that n is locally represented by
Q = x2 + 3y2 + 3z2 + xy + 3yz . Then either n is represented by
Q, or by R = x2 + xy + y2 + 8z2, the other form in Gen(Q).

• Assume that R = x2 + xy + y2 + 8z2 represents n. Then, there
are r , s ∈ Z so that n = r2 + 3s2 + 8z2.

• A simple calculation shows that Q(r − z , 2z , s − z) = n. This
proves that Q is regular.
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Regular ternary quadratic forms

• In 1997, Jagy, Kaplansky, and Schiemann proved that there are
at most 913 regular ternary quadratic forms.

• Of their 913 candidates, they proved that 891 of them were
regular.

• In 2011, Oh proved that 8 more of their candidates were regular.
In 2014, Lemke-Oliver proved the remaining 14 were regular
assuming GRH.
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Using regular ternary forms

• Sometimes, a regular ternary form T can be used to determine
which integers in S are represented by a quaternary form Q.

• Let L be the quaternary lattice. Suppose that L has a sublattice
L′ so that

L′ corresponds to a regular ternary quadratic form,

L′ ⊕ (L′)⊥ locally represents everything in S .

• Then a simple calculation will determine the integers in S that
are represented by L.
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Example I

• Let Q(x , y , z ,w) = x2 + y2 + yz + 2z2 + 7w2. The form
T (x , y , z) = x2 + y2 + yz + 2z2 is regular.

• The form T represents all positive integers except those
≡ 21, 35, 42 (mod 49).

• Since

21 ≡ 7 · 12 + 14 (mod 49)

35 ≡ 7 · 22 + 7 (mod 49)

42 ≡ 7 · 22 + 14 (mod 49),

Q represents all positive integers.

Jeremy Rouse Integers represented by QFs 37/40



History
Escalator lattices
Local conditions

Regular forms

Example I

• Let Q(x , y , z ,w) = x2 + y2 + yz + 2z2 + 7w2. The form
T (x , y , z) = x2 + y2 + yz + 2z2 is regular.

• The form T represents all positive integers except those
≡ 21, 35, 42 (mod 49).

• Since

21 ≡ 7 · 12 + 14 (mod 49)

35 ≡ 7 · 22 + 7 (mod 49)

42 ≡ 7 · 22 + 14 (mod 49),

Q represents all positive integers.

Jeremy Rouse Integers represented by QFs 37/40



History
Escalator lattices
Local conditions

Regular forms

Example I

• Let Q(x , y , z ,w) = x2 + y2 + yz + 2z2 + 7w2. The form
T (x , y , z) = x2 + y2 + yz + 2z2 is regular.

• The form T represents all positive integers except those
≡ 21, 35, 42 (mod 49).

• Since

21 ≡ 7 · 12 + 14 (mod 49)

35 ≡ 7 · 22 + 7 (mod 49)

42 ≡ 7 · 22 + 14 (mod 49),

Q represents all positive integers.

Jeremy Rouse Integers represented by QFs 37/40



History
Escalator lattices
Local conditions

Regular forms

Example II

• Let Q(x , y , z ,w) = x2 + xy + 3y2 + 4z2 + 77w2. The form
T (x , y , z) = x2 + xy + 3y2 + 4z2 is regular.

• The form T is regular, and fails to represent only those n with
n ≡ 2 (mod 4) and n = 11αβ with α odd and

( β
11

)
= −1.

• A computer program needs to check 235 residue classes. It finds
that Q represents all odd numbers except

143, 187, 231, 385, 451, 627, 935, 1111, 1419, 1903, and 2387.
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Proving the 451-theorem

• This method of using regular forms is a key method to proving
the 451-theorem.

• There are 24312 four-dimensional escalators, and one must
understand the odd integers represented by each.

• This method of regular ternary forms can be used to handle
about 7000 of the 24312.
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An exercise

• The form T (x , y , z) = x2 + y2 + z2 is regular. It represents all
positive integers not of the form 4k(8`+ 7).

• Exercise 3: Let p be a prime number and
Q(x , y , z ,w) = x2 + py2 + pz2 + pw2.

• Show that if p 6≡ 1 (mod 8), then every positive integer n which
is congruent to a square mod p and n > p(4p − 5) is represented
by Q.

• Show that if p ≡ 3 (mod 8), then n = p(4p − 5) is not
represented by Q.
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