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Notes and exercises

• You can find slides and exercises from my series of talks online at
http://users.wfu.edu/rouseja/caaantquafs/.
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What is a modular form?

• A modular form is a holomorphic function f : H→ C, where
H = {x + iy ∈ C : y > 0}.

• Also, a modular form has a weight k and level N. This means
that

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all matrices

[
a b
c d

]
with a, b, c , d ∈ Z, ad − bc = 1 and N|c .
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Holomorphic at the cusps

• This forces f (z + 1) = f (z).

• We require f (z) to have a Fourier expansion

f (z) =
∞∑

n=−∞
a(n)e2πinz

where a(n) = 0 if n < 0 and |a(n)| ≤ C1n
C2 for some C1 and C2.
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Why?

Modular forms are functions on the complex plane that
are inordinately symmetric. They satisfy so many internal
symmetries that their mere existence seem like accidents.
But they do exist.

There are five fundamental operations of arithmetic:
addition, subtraction, multiplication, division, and
modular forms.
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A picture
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More definitions

• A Dirichlet character modulo N is a function χ : Z→ C with the
following properties:

we have χ(mn) = χ(m)χ(n) for all m, n ∈ Z
we have χ(m) = 0 if and only if gcd(m,N) > 1

we have χ(m + N) = χ(m) for all m ∈ Z.

• Dirichlet characters modulo N are in bijection with
homomorphisms from (Z/NZ)× to C×.
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Modular forms with character

• A modular form of weight k, level N and character χ is a
modular form that transforms like

f

(
az + b

cz + d

)
= χ(d)(cz + d)k f (z)

for all [
a b
c d

]
∈ Γ0(N)

which is the set of invertible 2× 2 matrices with N|c .

• We denote by Mk(Γ0(N), χ) the C-vector space of such modular
forms.

• This vector space is finite-dimensional!!!
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Theta series

• Suppose that Q = 1
2~x

TA~x is a positive-definite, integer-valued
quadratic form in r variables.

• Define q = e2πiz and

θQ(z) =
∞∑
n=0

rQ(n)qn,

where rQ(n) = #{~x ∈ Zr : Q(~x) = n}.

• Then θQ(z) ∈ Mr/2(Γ0(N(Q)), χ).
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Parameters

• Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A−1 has integer entries and even diagonal entries.

• If D is a positive integer, define χD to be the unique Dirichlet
character with

χD(p) =


0 if gcd(p,D) > 1

1 if ∃x ∈ Z so x2 ≡ D (mod p)

−1 otherwise.

• Let D(Q) = det(A). The character χ for θQ is χD(Q).

Jeremy Rouse Integers represented by QFs 11/34



Intro to modular forms
Theory of modular forms

Computations for 290 and 451

Parameters

• Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A−1 has integer entries and even diagonal entries.

• If D is a positive integer, define χD to be the unique Dirichlet
character with

χD(p) =


0 if gcd(p,D) > 1

1 if ∃x ∈ Z so x2 ≡ D (mod p)

−1 otherwise.

• Let D(Q) = det(A). The character χ for θQ is χD(Q).

Jeremy Rouse Integers represented by QFs 11/34



Intro to modular forms
Theory of modular forms

Computations for 290 and 451

Parameters

• Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A−1 has integer entries and even diagonal entries.

• If D is a positive integer, define χD to be the unique Dirichlet
character with

χD(p) =


0 if gcd(p,D) > 1

1 if ∃x ∈ Z so x2 ≡ D (mod p)

−1 otherwise.

• Let D(Q) = det(A). The character χ for θQ is χD(Q).

Jeremy Rouse Integers represented by QFs 11/34



Intro to modular forms
Theory of modular forms

Computations for 290 and 451

Example (1/3)

• Let Q = x2 + y2 + z2 + w2. We have A =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

.

• This means that N(Q) = 4, and χ = χ4 is the function so that
χ4(n) = 1 if n is odd and χ4(n) = 0 if n is even.

• So

θQ(z) = 1 + 8q+ 24q2 + 32q3 + 48q4 + 96q5 + · · · ∈ M2(Γ0(4), χ4).
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Example (2/3)

• The space M2(Γ0(4), χ4) is 2-dimensional. One basis element is

f (z) = 1 + 24
∞∑
n=1

∑
d |n

d odd

d

 qn.

• The other basis element is f (2z).

• It’s not hard to compute that θQ(z) = 1
3 f (z) + 2

3 f (2z).
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Example (3/3)

Theorem (Jacobi, 1834)

The number of ways to write an integer as a sum of four squares is

rQ(n) =


8
∑

d |n
dodd

d if n is odd

24
∑

d |n
dodd

d if n is even.
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Exercise 4

• The goal of this exercise is to justify Eichler’s claim that modular
forms are one of the fundamental operations of arithmetic.

• Exercise 4: Let σ(n) be the sum of the divisors of n. Compute∑
d<10100

d odd

σ(d)σ(10100 − d).

• The next slide has hints.
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Hints

• Define E4(z) = 1 + 240
∑∞

n=1 σ3(n)qn, where σ3(n) =
∑

d |n d
3.

• Show that h(z) = f (z)−f (2z)
24 =

∑
n odd σ(n)qn ∈ M2(Γ0(4), χ4).

• Show that h(z)2 ∈ M4(Γ0(4), χ4). Use that this space is spanned
by E4(z), E4(2z) and E4(4z).
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Eisenstein series and cusp forms

• For the rest of this talk, we’ll focus on weight 2 modular forms.

• Every element f (z) ∈ M2(Γ0(N), χ) has a decomposition into
f (z) = E (z) + C (z), where E (z) is an Eisenstein series, and C (z)
is a cusp form.

• The coefficients of E (z) are “large and predictable” and the
coefficients of C (z) are “small and mysterious.”

• Let S2(Γ0(N), χ) denote the subspace of cusp forms.
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Eisenstein series part

• If f (z) = θQ(z), then E (z) =
∑∞

n=0 aE (n)qn has its coefficients
given by

aE (n) =
∏
p≤∞

βp(n),

the product of local densities.

• This means that aE (n) ≈ n, although if Q is anisotropic at p,
then βp(n) can be small.

• There is a constant CE so that if n is squarefree,

aE (n) ≥ CEn
∏
p|n

χ(p)=−1

p − 1

p + 1
.
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Hecke operators

• There is a family of linear maps
T (p) : M2(Γ0(N), χ)→ M2(Γ0(N), χ).

• If f (z) =
∑∞

n=0 a(n)qn, define

f (z)|T (p) =
∞∑
n=0

(
a(pn) + χ(p)pa

(
n

p

))
qn.

• If f (z) ∈ S2(Γ0(N), χ), then so is f |T (p).
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Another operator

• If p 6= q, then T (p)T (q) = T (q)T (p). We’d like to find a basis
for S2(Γ0(N), χ) consisting of simultaneous eigenforms for the
T (p).

• If d |N one can define a map
V (d) : S2(Γ0(N/d), χ)→ S2(Γ0(N)). Let f (z) =

∑
a(n)qn, and

define
f (z)|V (d) = f (dz) =

∑
a(n)qdn.

• In order to diagonalize, we need to isolate that forms that “don’t
come from lower level.”
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The Petersson inner product

• For f , g ∈ S2(Γ0(N), χ), define

〈f , g〉 =
3

π[SL2(Z) : Γ0(N)]

∫∫
H/Γ0(N)

f (x + iy)g(x + iy) dx dy .

• We define the old subspace Sold
2 (Γ0(N), χ) to be

⊕d |N
d>1

⊕e|d S2(Γ0(N/d), χ)|V (e).

• The new subspace Snew
2 (Γ0(N), χ) is the orthogonal complement

of the old subspace.
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Newforms

• The space Snew
2 (Γ0(N), χ) has a basis consisting of newforms.

• These are forms f (z) =
∑∞

n=1 a(n)qn, with

a(1) = 1

a(mn) = a(m)a(n) if gcd(m, n) = 1

a(pk) = a(p)a(pk−1)− χ(p)pa(pk−2) for k ≥ 2.

Theorem (Eichler-Igusa-Shimura, 1950s)

If f (z) is a newform, then |a(n)| ≤ d(n)
√
n, where d(n) is the

number of divisors of n.
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Example

• Consider the case that N = 33 and χ = 1. We have
dim S2(Γ0(33), χ) = 3.

• There is a newform

f (z) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · ∈ S2(Γ0(11), χ).

We have f (z) and f (z)|V (3) are in S2(Γ0(33), χ).

• The third basis element of S2(Γ0(33), χ) is a newform of level 33:

g(z) = q + q2 − q3 − q4 − 2q5 − q6 + 4q7 + · · · .
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Exercise 5

• Define E2(z) = 1− 24
∑∞

n=1 σ(n)qn. It’s a fact that for any
N ≥ 1, E2,N(z) = E2(z)− NE2(Nz) is an Eisenstein series in
M2(Γ0(N), χ1).

• Let Q(x , y , z ,w) = x2 + xy + y2 + 11(z2 + zw + w2). Express
θQ(z) in terms of E2,3(z), E2,11(z) and E2,33(z), f (z), f (z)|V (3),
and g(z).

• Find a number B so that if n > B is squarefree, then n is
represented by Q. What’s the minimal such B?
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Cusp form coefficients

• Let C (z) =
∑∞

n=1 aC (n)qn ∈ S2(Γ0(N), χ) be an arbitrary cusp
form.

• Then, there is a decomposition

C (z) =
∑
M|N

s∑
i=1

∑
d

cM,i ,dgM,i (z)|V (d)

where the gM,i (z) is a newform of level M.

• This gives the bound

|aC (n)| ≤

∑
M|n

s∑
i=1

|cM,i ,d |√
d

 d(n)
√
n.
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Example (1/2)

• If Q = x2 + y2 + 3z2 + 3w2 + xz + yw , then

θQ(z) = 1 + 4q + 4q2 + 8q3 + 20q4 + 16q5 + · · · ∈ M2(Γ0(11), χ1).

• We have

E (z) = 1 +
12

5

∞∑
n=1

(σ(n)− 11σ(n/11))qn.

• Then C (z) = 8
5 f (z), where f (z) is the unique newform of level

11.

• Thus,

rQ(n) ≥ 12

5

∑
d |n
11-d

d − 8

5
d(n)
√
n.
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Example (2/2)

• If n is squarefree and gcd(n, 11) = 1, assuming that rQ(n) = 0
yields the inequality ∏

p|n

√
p + 1/

√
p

2
≤ 2

3
.

• If n is squarefree and 11|n, rQ(n) = 0 yields∏
p|n

p 6=11

√
p + 1/

√
p

2
≤ 4
√

11

3
.

• The above inequality is true for precisely 110 squarefree integers.
The form Q represents all of these. It follows that Q represents all
positive integers.
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General setup - Eisenstein

• Let Q be a 4-variable QF. Write θQ(z) = E (z) + C (z).

• We have E (z) =
∑∞

n=0 aE (n)qn and there is a constant CE so
that

aE (n) ≥ CEn
∏
p|n

χ(p)=−1

p − 1

p + 1
.
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General setup - cusp forms

• We can decompose

C (z) =
∑
M|N

s∑
i=1

∑
d

cM,i ,dgM,i (z)|V (d).

• Define

CQ =

∑
M|N

s∑
i=1

∑
d

|cM,i ,d |√
d

 .

• Then |aC (n)| ≤ CQd(n)
√
n.
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Representability

Theorem (Hanke, 2004)

If n is squarefree and not represented by Q, then

F4(n) =

√
n

d(n)

∏
p|n,p-N
χ(p)=−1

p − 1

p + 1
≤ CQ

CE
.

• The integers n that satisfy the inequality above can be
enumerated efficiently and checked, provided one can compute CE

and CQ .

• Computing CE is straightforward using formulas for local
densities.
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Computing CQ

• In order to do explicit computations in S2(Γ0(N), χ), one relies
on the modular symbols algorithms (and code) of William Stein.

• The dimension of S2(Γ0(N), χ) is approximately N
6 . Computing

CQ can be extremely time-consuming.
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Example (from 451)

• For

Q(x , y , z ,w) = x2 − xy + 2y2 + yz − 2yw + 5z2 + zw + 29w2

we have θQ ∈ M2(Γ0(4200), χ168).

• We have dimS2(Γ0(4200), χ168) = 936.

• It takes almost a day to compute that CQ ≈ 31.0537.

• Once this is known, it takes 10 seconds to check that Q
represents every odd number.

Jeremy Rouse Integers represented by QFs 32/34
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Example (from 290)

• The form

Q(x , y , z ,w) = x2− xz − xw + 2y2 + yz + yw + 5z2 + 5zw + 29w2

has level 4092.

• We have that dimS2(Γ0(4092), χ) = 760, but this space contains
a newform g(z) (and its Galois conjugates) with coefficients in a
degree 672 number field.

• The modular symbols algorithm requires 46 days to compute CQ .
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Preview of tomorrow

• New goal: Find a method for giving a bound on CQ without
taking the time to explicitly compute it.

• The Petersson inner product gives another way to measure how
“big” a cusp form is.

• The goal is to find an efficient way to compute 〈C ,C 〉 and
translate that into a bound on CQ .
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