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Notes and exercises

e You can find slides and exercises from my series of talks online at
http://users.wfu.edu/rouseja/caaantquafs/.

Jeremy Rouse Integers represented by QFs 2/34



Outline

@ Overview of modular forms
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Outline

@ Overview of modular forms

@ Theta series, Eisenstein series, newforms
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Outline

@ Overview of modular forms
@ Theta series, Eisenstein series, newforms

@ Determining the integers represented by a quadratic form
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Intro to modular forms

What is a modular form?

e A modular form is a holomorphic function f : H — C, where
H={x+iyeC:y>0}
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Intro to modular forms

What is a modular form?

e A modular form is a holomorphic function f : H — C, where
H={x+iyeC:y>0}

e Also, a modular form has a weight k and level N. This means

that
f<az+b

p— d> = (cz + d)f(2)

for all matrices [i 3} with a, b, c,d € Z, ad — bc =1 and N|c.
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Intro to modular forms

Holomorphic at the cusps

e This forces f(z+ 1) = f(z).
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Intro to modular forms

Holomorphic at the cusps

e This forces f(z + 1) = f(z).

e We require f(z) to have a Fourier expansion

oo

f(z): Z a(n)e27rinz

n=—oo

where a(n) =0 if n < 0 and |a(n)| < C;n for some C; and Go.
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Intro to modular forms

Modular forms are functions on the complex plane that
are inordinately symmetric. They satisfy so many internal
symmetries that their mere existence seem like accidents.

But they do exist.
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Intro to modular forms

Modular forms are functions on the complex plane that
are inordinately symmetric. They satisfy so many internal
symmetries that their mere existence seem like accidents.
But they do exist.

There are five fundamental operations of arithmetic:
addition, subtraction, multiplication, division, and
modular forms.
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Intro to modular forms

A picture
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Intro to modular forms

More definitions

e A Dirichlet character modulo N is a function x : Z — C with the
following properties:
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Intro to modular forms

More definitions

e A Dirichlet character modulo N is a function x : Z — C with the
following properties:

o we have x(mn) = x(m)x(n) for all m,n € Z
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Intro to modular forms

More definitions

e A Dirichlet character modulo N is a function x : Z — C with the
following properties:

o we have x(mn) = x(m)x(n) for all m,n € Z
o we have x(m) = 0 if and only if gcd(m, N) > 1
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Intro to modular forms

More definitions

e A Dirichlet character modulo N is a function x : Z — C with the
following properties:

o we have x(mn) = x(m)x(n) for all m,n € Z
o we have x(m) = 0 if and only if gcd(m, N) > 1
o we have x(m+ N) = x(m) for all m € Z.
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Intro to modular forms

More definitions

e A Dirichlet character modulo N is a function x : Z — C with the
following properties:

o we have x(mn) = x(m)x(n) for all m,n € Z
o we have x(m) = 0 if and only if gcd(m, N) > 1
o we have x(m+ N) = x(m) for all m € Z.

e Dirichlet characters modulo N are in bijection with
homomorphisms from (Z/NZ)* to C*.
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Intro to modular forms

Modular forms with character

e A modular form of weight k, level N and character x is a
modular form that transforms like

cz+d

f <az + b) — v(d)(cz + d)(2)
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Intro to modular forms

Modular forms with character

e A modular form of weight k, level N and character x is a
modular form that transforms like

cz+d

f <az + b) — v(d)(cz + d)(2)

for all
a b
|:C d:| S ro(N)

which is the set of invertible 2 x 2 matrices with N|c.
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Intro to modular forms

Modular forms with character

e A modular form of weight k, level N and character x is a
modular form that transforms like

; az+b
cz+d

) — x(d)(cz + )£ (2)

for all

a b
|:C d:| S ro(N)
which is the set of invertible 2 x 2 matrices with N|c.

e We denote by My (Io(N), x) the C-vector space of such modular
forms.
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Intro to modular forms

Modular forms with character

e A modular form of weight k, level N and character x is a
modular form that transforms like

f <az + b) — v(d)(cz + d)(2)

cz+d

for all

[i 2] € To(N)

which is the set of invertible 2 x 2 matrices with N|c.

e We denote by My (Io(N), x) the C-vector space of such modular
forms.

e This vector space is finite-dimensional!!!
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Intro to modular forms

Theta series

e Suppose that Q = 1XT AX is a positive-definite, integer-valued

quadratic form in r variables.
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Intro to modular forms

Theta series

e Suppose that Q = 1XT AX is a positive-definite, integer-valued

quadratic form in r variables.

2miz

e Define g=¢e and
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Intro to modular forms

Theta series

e Suppose that Q = 1XT AX is a positive-definite, integer-valued

quadratic form in r variables.

2miz

e Define g=¢e and

e Then 0g(z) € M, 5(To(N(Q)), X)-
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Intro to modular forms

Parameters

e Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A~! has integer entries and even diagonal entries.
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Intro to modular forms

Parameters

e Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A~! has integer entries and even diagonal entries.

e If D is a positive integer, define xp to be the unique Dirichlet
character with

0 if ged(p, D) >1
xp(p) =41 if Ix€Zsox?>=D (mod p)

—1 otherwise.
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Intro to modular forms

Parameters

e Here, N(Q) is the level of Q, the smallest positive integer so
that N(Q)A~! has integer entries and even diagonal entries.

e If D is a positive integer, define xp to be the unique Dirichlet
character with

0 if ged(p, D) >1
xp(p) =41 if Ix€Zsox?>=D (mod p)

—1 otherwise.

e Let D(Q) = det(A). The character x for 0q is xp(q)-
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Intro to modular forms

Example (1/3)

olet Q=x%>+y?+ 22+ w? We have A=

O O N O
O N O O
N O O O

O O OoON
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Intro to modular forms

Example (1/3)

olet Q=x%>+y?+ 22+ w? We have A=

O O N O
O N O O
N O O O

O O OoON

e This means that N(Q) = 4, and x = xa is the function so that
xa(n) = 1if nis odd and xa(n) =0 if n is even.
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Intro to modular forms

Example (1/3)

2 0 00
0200
) 2 2 2 _
olet Q=x“+y“+z°+ w*. We have A= 00 2 0
0 0 0 2

e This means that N(Q) = 4, and x = xa is the function so that
xa(n) = 1if nis odd and xa(n) =0 if n is even.

e So

0o(z) = 1+8g+24¢° +32q° +48¢* +96¢° + - - - € Ma(To(4), xa).
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Intro to modular forms

Example (2/3)

e The space Mx(I'o(4), xa) is 2-dimensional. One basis element is

f(z):1+24i AR
d|n

n=1
d odd
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Intro to modular forms

Example (2/3)

e The space Mx(I'o(4), xa) is 2-dimensional. One basis element is

f(z):1+24i AR
d|n

n=1
d odd

e The other basis element is f(2z).
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Intro to modular forms

Example (2/3)

e The space Mx(I'o(4), xa) is 2-dimensional. One basis element is

n=1

f(z):1+24i AR
d|n

d odd

e The other basis element is f(2z).

e It's not hard to compute that 0g(z) = 3f(z) + 5f(2z).
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Intro to modular forms

Example (3/3)

Theorem (Jacobi, 1834)

The number of ways to write an integer as a sum of four squares is

85 4o d  ifnisodd

ro(n) = dodd -
245 gjn d if n is even.

dodd
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Intro to modular forms

Exercise 4

e The goal of this exercise is to justify Eichler's claim that modular
forms are one of the fundamental operations of arithmetic.
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Intro to modular forms

Exercise 4

e The goal of this exercise is to justify Eichler's claim that modular
forms are one of the fundamental operations of arithmetic.

e Exercise 4: Let o(n) be the sum of the divisors of n. Compute

> o(d)o(10' - d).

d<10100
d odd
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Intro to modular forms

Exercise 4

e The goal of this exercise is to justify Eichler's claim that modular
forms are one of the fundamental operations of arithmetic.

e Exercise 4: Let o(n) be the sum of the divisors of n. Compute

> o(d)o(10' - d).

d<10100
d odd

e The next slide has hints.
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Intro to modular forms

o Define E4(z) = 1+2403,", 03(n)q", where o3(n) = Zd\n d>.

Jeremy Rouse Integers represented by QFs 16/34



Intro to modular forms

o Define E4(z) = 1+2403,", 03(n)q", where o3(n) = Zd\n d>.

e Show that h(Z) = % = Zn odd U(n)qn € M2(r0(4)7X4)'
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Intro to modular forms

o Define E4(z) = 1+2403,", 03(n)q", where o3(n) = Zd\n d>.

e Show that h(Z) = % = Zn odd U(n)qn € Mz(ro(4)»X4)-

e Show that h(z)? € My(To(4),x4). Use that this space is spanned
by E4(z), E4(2z) and Es(4z).
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Theory of modular forms

Eisenstein series and cusp forms

e For the rest of this talk, we'll focus on weight 2 modular forms.
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Theory of modular forms

Eisenstein series and cusp forms

e For the rest of this talk, we'll focus on weight 2 modular forms.
e Every element f(z) € Ma(Ig(N), x) has a decomposition into

f(z) = E(z) + C(z), where E(z) is an Eisenstein series, and C(z)
is a cusp form.
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Theory of modular forms

Eisenstein series and cusp forms

e For the rest of this talk, we'll focus on weight 2 modular forms.
e Every element f(z) € Ma(Ig(N), x) has a decomposition into
f(z) = E(z) + C(z), where E(z) is an Eisenstein series, and C(z)

is a cusp form.

e The coefficients of E(z) are “large and predictable” and the
coefficients of C(z) are “small and mysterious.”
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Theory of modular forms

Eisenstein series and cusp forms

e For the rest of this talk, we'll focus on weight 2 modular forms.
e Every element f(z) € Ma(Ig(N), x) has a decomposition into
f(z) = E(z) + C(z), where E(z) is an Eisenstein series, and C(z)

is a cusp form.

e The coefficients of E(z) are “large and predictable” and the
coefficients of C(z) are “small and mysterious.”

e Let Sy(Mo(N), x) denote the subspace of cusp forms.
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Theory of modular forms

Eisenstein series part

o If f(z) =0¢(z), then E(z) =372, ar(n)q" has its coefficients
given by
ae(n) = [T Boln).

p<oo
the product of local densities.
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Theory of modular forms

Eisenstein series part

o If f(z) =0¢(z), then E(z) =372, ar(n)q" has its coefficients
given by
ae(n) = [T Boln).

p<oo
the product of local densities.

e This means that ag(n) =~ n, although if Q is anisotropic at p,
then S,(n) can be small.
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Theory of modular forms

Eisenstein series part

o If f(z) =0¢(z), then E(z) =372, ar(n)q" has its coefficients

given by
ae(n) = T 8o(n).

p<oo
the product of local densities.

e This means that ag(n) =~ n, although if Q is anisotropic at p,
then S,(n) can be small.

e There is a constant Cg so that if n is squarefree,

p—1

aeg(n) > Cen .
e(n) > Cg b1

pln
x(p)=-1
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Theory of modular forms

Hecke operators

e There is a family of linear maps
T(p) : Ma(To(N), x) = M2(To(N), x).
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Theory of modular forms

Hecke operators

e There is a family of linear maps
T(p) : Ma(To(N), x) = M2(To(N), x).

o If f(z) =372 ga(n)q", define

(@17 = (stom) + x(elpa (2) ) .

n=0
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Theory of modular forms

Hecke operators

e There is a family of linear maps
T(p) : Ma(To(N), x) = M2(To(N), x).

o If f(z) =372 ga(n)q", define

(@17 = (stom) + x(elpa (2) ) .

n=0

o If f(z) € So(To(N), x), then so is f|T(p).
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Theory of modular forms

Another operator

o If p#£q, then T(p)T(q) = T(q)T(p). We'd like to find a basis
for So(To(N), x) consisting of simultaneous eigenforms for the

T(p).
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Theory of modular forms

Another operator

o If p#£q, then T(p)T(q) = T(q)T(p). We'd like to find a basis
for So(To(N), x) consisting of simultaneous eigenforms for the

T(p).

e If d|N one can define a map
V(d): So(To(N/d), x) = S2(To(N)). Let f(z) =) a(n)q", and

define
f(2)|V(d) = f(dz) =Y a(n)g™.
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Theory of modular forms

Another operator

o If p#£q, then T(p)T(q) = T(q)T(p). We'd like to find a basis
for So(To(N), x) consisting of simultaneous eigenforms for the

T(p).

e If d|N one can define a map
V(d): So(To(N/d), x) = S2(To(N)). Let f(z) =) a(n)q", and

define
f(2)|V(d) = f(dz) =Y a(n)g™.

e In order to diagonalize, we need to isolate that forms that “don’t
come from lower level.”
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Theory of modular forms

The Petersson inner product

o For f,g € S2(Io(N), x), define

3 . -7+ N\
(1.8) = ) o / /H oy [ Bl ey
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Theory of modular forms

The Petersson inner product

o For f,g € S2(Io(N), x), define

3 . -7+ N\
(1.8) = ) o / /H oy [ Bl ey

e We define the old subspace S9'4(Io(N),x) to be

®g|/\{ Dejd S2(Fo(N/d), x)|V (e).
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Theory of modular forms

The Petersson inner product

o For f,g € S2(Io(N), x), define

3 . -7+ N\
(1.8) = ) o / /H oy [ Bl ey

e We define the old subspace S9'4(Io(N),x) to be

®g|/\{ Dejd S2(Fo(N/d), x)|V (e).

e The new subspace 53V (I'o(N), x) is the orthogonal complement
of the old subspace.
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Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.
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Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.

e These are forms f(z) = > a(n)q", with
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Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.

e These are forms f(z) = > a(n)q", with
0 a(l)=1

Jeremy Rouse Integers represented by QFs 22/34



Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.

e These are forms f(z) = > a(n)q", with
0 a(l)=1
e a(mn) = a(m)a(n) if gcd(m, n) =1

Jeremy Rouse Integers represented by QFs 22/34



Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.

e These are forms f(z) = > 7,
0 a(l)=1
e a(mn) = a(m)a(n) if gcd(m, n) =1
o a(p¥) = a(p)a(p*~t) — x(p)pa(p*~?) for k > 2.

a(n)q", with
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Theory of modular forms

Newforms

e The space 5;°V(I'o(N), x) has a basis consisting of newforms.

e These are forms f(z) = > a(n)q", with
0 a(l)=1
e a(mn) = a(m)a(n) if gcd(m,n) =1
o a(p¥) = a(p)a(p"~*) — x(p)pa(p*~?) for k > 2.

Theorem (Eichler-lgusa-Shimura, 1950s)

If f(z) is a newform, then |a(n)| < d(n)\/n, where d(n) is the
number of divisors of n.
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Theory of modular forms

Example

e Consider the case that N = 33 and xy = 1. We have
dim S»(o(33), x) = 3.
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Theory of modular forms

Example

e Consider the case that N = 33 and xy = 1. We have
dim S»(o(33), x) = 3.

e There is a newform
f(z) =qg—29° —q> +2g* + q° +2¢° —2¢" +--- € Sy(Tp(11), x).

We have f(z) and f(z)|V/(3) are in S(I'0(33), x).
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Theory of modular forms

Example

e Consider the case that N = 33 and xy = 1. We have
dim S»(o(33), x) = 3.

e There is a newform
f(z) =qg—29° —q> +2g* + q° +2¢° —2¢" +--- € Sy(Tp(11), x).

We have f(z) and f(z)|V/(3) are in S(I'0(33), x).

e The third basis element of Sy(I'0(33), x) is a newform of level 33:

8(2)=q+ -0 —q" —2¢°—q"+4q" +---.
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Theory of modular forms

Exercise 5

o Define Ex(z) =1—243"7", 0(n)q". It's a fact that for any
N > 1, E; n(z) = Ex(z) — NEx(Nz) is an Eisenstein series in
M2(r0(N)>X1)'
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Theory of modular forms

Exercise 5

o Define Ex(z) =1—243"7", 0(n)q". It's a fact that for any
N > 1, E; n(z) = Ex(z) — NEx(Nz) is an Eisenstein series in
M2(r0(N)>X1)'

o Let Q(x,y,z,w) = x?>+ xy + y? + 11(z% + zw + w?). Express
HQ(Z) in terms of E2’3(Z), E2’11(Z) and E2,33(Z), f(z), f(Z)‘V(?)),
and g(z).
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Theory of modular forms

Exercise 5

o Define Ex(z) =1—243"7", 0(n)q". It's a fact that for any
N > 1, E; n(z) = Ex(z) — NEx(Nz) is an Eisenstein series in
M2(r0(N)>X1)'

o Let Q(x,y,z,w) = x?>+ xy + y? + 11(z% + zw + w?). Express
HQ(Z) in terms of E2’3(Z), E2’11(Z) and E2,33(Z), f(z), f(Z)‘V(?)),
and g(z).

e Find a number B so that if n > B is squarefree, then n is
represented by Q. What's the minimal such B?
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Theory of modular forms

Cusp form coefficients

o Let C(z) =>",2; ac(n)q" € S2(To(N), x) be an arbitrary cusp
form.
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Theory of modular forms

Cusp form coefficients

o Let C(z) =>",2; ac(n)q" € S2(To(N), x) be an arbitrary cusp
form.

e Then, there is a decomposition

ZZZCM,I,dgMI )|V (d)

MIN i=1 d

where the gy (z) is a newform of level M.
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Theory of modular forms

Cusp form coefficients

o Let C(z) =>",2; ac(n)q" € S2(To(N), x) be an arbitrary cusp
form.

e Then, there is a decomposition

ZZZCM,I,dgMI )|V (d)

MIN i=1 d

where the gy (z) is a newform of level M.

e This gives the bound

sl < {23 i) oy

Min i=1
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Theory of modular forms

Example (1/2)

o If Q=x>+y?+3224+3w?+ xz + yw, then
00(z) = 1+4q+4¢>+8q>+20g* +16¢° + - - - € Ma(To(11), x1)-
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Theory of modular forms

Example (1/2)

o If Q=x>+y?+3224+3w?+ xz + yw, then
00(z) = 1+4q+4¢>+8q>+20g* +16¢° + - - - € Ma(To(11), x1)-

e We have

12 &

E(z)=1++ > (o(n) — 110(n/11))q".

n=1
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Theory of modular forms

Example (1/2)

o If Q=x>+y?+3224+3w?+ xz + yw, then
00(z) = 1+4q+4¢>+8q>+20g* +16¢° + - - - € Ma(To(11), x1)-

e We have

12 &
E(z)=1++ > (o(n) — 110(n/11))q".
n=1
e Then C(z) = &f(z), where f(z) is the unique newform of level
5

11.
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Theory of modular forms

Example (1/2)

o If Q=x>+y?+3224+3w?+ xz + yw, then
00(z) = 1+4q+4¢>+8q>+20g* +16¢° + - - - € Ma(To(11), x1)-

e We have
E(z)=1+ 12 Z( (n) —110(n/11))q"

5n1

e Then C(z) = £f(z), where f(z) is the unique newform of level
11.

e Thus,
o(n) > —Zd— fd(n

11fd
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Theory of modular forms

Example (2/2)

e If n is squarefree and gcd(n, 11) = 1, assuming that rg(n) =0
yields the inequality

Hﬁ+1/ﬁ<

2
2 =3

pln
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Theory of modular forms

Example (2/2)

e If n is squarefree and gcd(n, 11) = 1, assuming that rg(n) =0
yields the inequality

VESTN
11 <3

pln

e If n is squarefree and 11|n, ro(n) = 0 yields
I VPP _ 4Vl
2 - 3

pln
p#11
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Theory of modular forms

Example (2/2)

e If n is squarefree and gcd(n, 11) = 1, assuming that rg(n) =0
yields the inequality

VESTN
11 <3

pln

e If n is squarefree and 11|n, ro(n) = 0 yields
I VPP _ 4Vl
2 - 3

pln
p#11

e The above inequality is true for precisely 110 squarefree integers.
The form @ represents all of these. It follows that @ represents all

positive integers.
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Computations for 290 and 451

General setup - Eisenstein

o Let Q be a 4-variable QF. Write 0g(z) = E(z) + C(z2).
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Computations for 290 and 451

General setup - Eisenstein

o Let Q be a 4-variable QF. Write 0g(z) = E(z) + C(z2).

e We have E(z) = )"7";ae(n)q" and there is a constant Cg so
that
p—1

a > C .
E(n)_ En p+1

pln
x(p)=-1
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Computations for 290 and 451

General setup - cusp forms

e We can decompose

S

C(z) = Z Z Z cm.,i,d8m,i(z)|V(d).

MIN i=1 d
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Computations for 290 and 451

General setup - cusp forms

e We can decompose

S

= Z Z Z CM,i,dgM,i(Z)\ v(d).
MIN i=1 d

e Define

- (Eyoy o

M|N i=1 d
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Computations for 290 and 451

General setup - cusp forms

e We can decompose

S

= Z Z Z CM,i,dgM,i(Z)\ v(d).
MIN i=1 d

e Define

- (Eyoy o

M|N i=1 d

e Then |ac(n)| < Cod(n)\/n.
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Computations for 290 and 451

Representability

Theorem (Hanke, 2004)
If n is squarefree and not represented by @, then
vn p-1_GCo
d 1~ Ce
(n) Pl piN P+ E
x(p)=—1

F4(n) =
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Computations for 290 and 451

Representability

Theorem (Hanke, 2004)
If n is squarefree and not represented by @, then
vn p-1_GCo
d 1~ Ce
(n) Pl piN P+ E
x(p)=—1

F4(n) =

e The integers n that satisfy the inequality above can be
enumerated efficiently and checked, provided one can compute Cg
and Cp.
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Computations for 290 and 451

Representability

Theorem (Hanke, 2004)

If n is squarefree and not represented by @, then
vn p-1_GCo
d 1~ Ce
(n) I tN p+ E
x(p)=—1

F4(n) =

e The integers n that satisfy the inequality above can be
enumerated efficiently and checked, provided one can compute Cg
and Cp.

e Computing Cg is straightforward using formulas for local

densities.
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Computations for 290 and 451

Computing Co

e In order to do explicit computations in Sa(Fo(N), x), one relies
on the modular symbols algorithms (and code) of William Stein.

Jeremy Rouse Integers represented by QFs 31/34



Computations for 290 and 451

Computing Co

e In order to do explicit computations in Sa(Fo(N), x), one relies
on the modular symbols algorithms (and code) of William Stein.

e The dimension of Sy(I'g(N), x) is approximately %. Computing
Cq can be extremely time-consuming.
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Computations for 290 and 451

Example (from 451)

e For
Q(x,y,z,w) = x*> — xy + 2y + yz — 2yw + 52° + zw + 29w?

we have 0o € M»(I'9(4200), x168)-
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Example (from 451)

e For
Q(x,y,z,w) = x*> — xy + 2y + yz — 2yw + 52° + zw + 29w?

we have 0o € M»(I'9(4200), x168)-

e We have dim S,(I0(4200), x168) = 936.
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Computations for 290 and 451

Example (from 451)

e For
Q(x,y,z,w) = x*> — xy + 2y + yz — 2yw + 52° + zw + 29w?

we have 0o € M»(I'9(4200), x168)-
e We have dim S,(I0(4200), x168) = 936.

o |t takes almost a day to compute that Cgo ~ 31.0537.
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Computations for 290 and 451

Example (from 451)

e For
Q(x,y,z,w) = x*> — xy + 2y + yz — 2yw + 52° + zw + 29w?

we have 0o € M»(I'9(4200), x168)-
e We have dim S,(I0(4200), x168) = 936.
o |t takes almost a day to compute that Cgo ~ 31.0537.

e Once this is known, it takes 10 seconds to check that @
represents every odd number.
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Computations for 290 and 451

Example (from 290)

e The form

2

Q(x,y,z,w) = x> — xz — xw + 2y + yz + yw + 52° + 5zw + 29w?

has level 4092.
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Computations for 290 and 451

Example (from 290)

e The form

2

Q(x,y,z,w) = x> — xz — xw + 2y + yz + yw + 52° + 5zw + 29w?

has level 4092.

e We have that dim 5,(I0(4092), x) = 760, but this space contains
a newform g(z) (and its Galois conjugates) with coefficients in a
degree 672 number field.
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Computations for 290 and 451

Example (from 290)

e The form

2

Q(x,y,z,w) = x> — xz — xw + 2y + yz + yw + 52° + 5zw + 29w?

has level 4092.

e We have that dim 5,(I0(4092), x) = 760, but this space contains
a newform g(z) (and its Galois conjugates) with coefficients in a
degree 672 number field.

e The modular symbols algorithm requires 46 days to compute Cp.
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Computations for 290 and 451

Preview of tomorrow

e New goal: Find a method for giving a bound on Cg without
taking the time to explicitly compute it.
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Computations for 290 and 451

Preview of tomorrow

e New goal: Find a method for giving a bound on Cg without
taking the time to explicitly compute it.

e The Petersson inner product gives another way to measure how
“big" a cusp form is.
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Computations for 290 and 451

Preview of tomorrow

e New goal: Find a method for giving a bound on Cg without
taking the time to explicitly compute it.

e The Petersson inner product gives another way to measure how
“big" a cusp form is.

e The goal is to find an efficient way to compute (C, C) and
translate that into a bound on Cgp.
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