Integers represented by positive-definite quadratic forms - the modular approach

Jeremy Rouse

Conference on aspects of the algebraic and analytic theory of quadratic forms
University of Georgia July 25, 2017

Summary of last time

- If Q is a quaternary quadratic form, $\theta_{Q}(z)=\sum r_{Q}(n) q^{n}$ is a modular form.

Summary of last time

- If Q is a quaternary quadratic form, $\theta_{Q}(z)=\sum r_{Q}(n) q^{n}$ is a modular form.
- We can write $r_{Q}(n)=a_{E}(n)+a_{C}(n)$. There are explicit lower bounds on $a_{E}(n)$ of the form $a_{E}(n) \geq C_{E} n^{1-\epsilon}$.

Summary of last time

- If Q is a quaternary quadratic form, $\theta_{Q}(z)=\sum r_{Q}(n) q^{n}$ is a modular form.
- We can write $r_{Q}(n)=a_{E}(n)+a_{C}(n)$. There are explicit lower bounds on $a_{E}(n)$ of the form $a_{E}(n) \geq C_{E} n^{1-\epsilon}$.
- There is a constant C_{Q} so that $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$, but computing C_{Q} explicitly is hard.

Outline

- Quantitative forms of Tartakowski's theorem

Outline

- Quantitative forms of Tartakowski's theorem
- L-functions

Outline

- Quantitative forms of Tartakowski's theorem
- L-functions
- Bounding C_{Q} without computing it.

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \geq 4$ variables. Then n is represented by Q if

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \geq 4$ variables. Then n is represented by Q if
- n is locally represented by Q, and

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \geq 4$ variables. Then n is represented by Q if
- n is locally represented by Q, and
- n is sufficiently large, and

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \geq 4$ variables.

Then n is represented by Q if

- n is locally represented by Q, and
- n is sufficiently large, and
- if $r=4, n$ is squarefree.

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \geq 4$ variables.

Then n is represented by Q if

- n is locally represented by Q, and
- n is sufficiently large, and
- if $r=4, n$ is squarefree.
- Q: For a quaternary form Q, how large is the largest locally represented squarefree n that isn't represented by Q ?

Notation (1/2)

- Write $Q(\vec{x})=\frac{1}{2} \vec{x}^{\top} A \vec{x}$ where A has integer entries and even diagonal entries.

Notation (1/2)

- Write $Q(\vec{x})=\frac{1}{2} \vec{x}^{\top} A \vec{x}$ where A has integer entries and even diagonal entries.
- Let $N(Q)$ be the smallest positive integer so that $N(Q) A^{-1}$ has integer entries and even diagonal entries. Define $D(Q)=\operatorname{det}(A)$.

Notation (1/2)

- Write $Q(\vec{x})=\frac{1}{2} \vec{x}^{\top} A \vec{x}$ where A has integer entries and even diagonal entries.
- Let $N(Q)$ be the smallest positive integer so that $N(Q) A^{-1}$ has integer entries and even diagonal entries. Define $D(Q)=\operatorname{det}(A)$.
- Let $\|Q\|$ be the largest entry in the matrix A.

Notation (2/2)

- We write $f(n) \ll g(n)$ if there are constants C_{1} and C_{2} so that $f(n) \leq C_{1} g(n)$ for $n \geq C_{2}$.

Notation (2/2)

- We write $f(n) \ll g(n)$ if there are constants C_{1} and C_{2} so that $f(n) \leq C_{1} g(n)$ for $n \geq C_{2}$.
- We write $f(n) \ll n^{k+\epsilon}$ if for all $\epsilon>0, f(n) \leq C_{\epsilon} n^{k+\epsilon}$ if n is large enough.

Results (1/4)

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable $Q F$ and n satisfies appropriate local conditions and $n \gg N(Q)^{14+\epsilon}$, then n is represented by Q.

Results (1/4)

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable $Q F$ and n satisfies appropriate local conditions and $n \gg N(Q)^{14+\epsilon}$, then n is represented by Q.

Theorem 2 (Browning-Dietmann, 2008)

If Q is a 4-variable $Q F$ and n satisfies (different) appropriate local conditions and $n \gg D(Q)^{2}\|Q\|^{8+\epsilon}$, then n is represented by Q.

Results (2/4)

- A discriminant is an integer $D \equiv 0$ or $1(\bmod 4)$. A fundamental discriminant D is a discriminant with the property that there is no $k>1$ so that $k^{2} \mid D$ and $\frac{D}{k^{2}}$ is a discriminant.

Results (2/4)

- A discriminant is an integer $D \equiv 0$ or $1(\bmod 4)$. A fundamental discriminant D is a discriminant with the property that there is no $k>1$ so that $k^{2} \mid D$ and $\frac{D}{k^{2}}$ is a discriminant.

Theorem 3 ($R, 2014$)

Suppose that Q is a 4-variable $Q F$ and $D(Q)$ is a fundamental discriminant. Then, if $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable $Q F$. Assume that $\operatorname{gcd}(n, D(Q))=1$ and n is locally represented by Q. If

$$
n \gg D(Q)^{1+\epsilon} N(Q)^{2+\epsilon}
$$

then n is represented by Q.

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable $Q F$. Assume that $\operatorname{gcd}(n, D(Q))=1$ and n is locally represented by Q. If

$$
n \gg D(Q)^{1+\epsilon} N(Q)^{2+\epsilon}
$$

then n is represented by Q.

Theorem 5 (R)

Let Q be a 4-variable $Q F$. Assume that n is locally represented (but not represented by Q) and $n \gg(D(Q) N(Q))^{3+\epsilon}$. Then there is an anisotropic prime p so that $p^{2} \mid n$ and $n p^{2 k}$ is not represented for any $k \geq 0$.

Results (4/4)

Theorem 6 (R-Thompson)
Suppose that Q is a 4-variable $Q F$ and $D(Q)=p$ is prime. Then

$$
\sum_{\substack{n \\ r_{Q}(n)=0}} n \ll p^{3}
$$

Results (4/4)

Theorem 6 (R-Thompson)

Suppose that Q is a 4-variable $Q F$ and $D(Q)=p$ is prime. Then

$$
\sum_{\substack{n \\ r_{Q}(n)=0}} n \ll p^{3}
$$

Theorem 7 (R-Thompson)

Let $p=8 t+5$ be prime and
$Q(x, y, z, w)=x^{2}+x y+x z+x w+y^{2}+y z+y w+z^{2}+z w+t w^{2}$.
Then $D(Q)=p$ and the largest positive integer not represented by Q is the largest positive integer $m<t$ that is not of the form $4^{k}(16 \ell+14)$.

The Petersson inner product (1/2)

- Instead of exactly computing C_{Q}, we derive an upper bound for it with less computation. This method works only when $D(Q)=N(Q)$ is a fundamental discriminant.

The Petersson inner product (1/2)

- Instead of exactly computing C_{Q}, we derive an upper bound for it with less computation. This method works only when $D(Q)=N(Q)$ is a fundamental discriminant.
- We use the Petersson inner product of two cusp forms $f, g \in S_{2}\left(\Gamma_{0}(D), \chi_{D}\right)$ given by

$$
\langle f, g\rangle=\frac{3 / \pi}{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(D)\right]} \iint_{\mathbb{H} / \Gamma_{0}(D)} f(x+i y) \overline{g(x+i y)} d x d y
$$

The Petersson inner product (1/2)

- Instead of exactly computing C_{Q}, we derive an upper bound for it with less computation. This method works only when $D(Q)=N(Q)$ is a fundamental discriminant.
- We use the Petersson inner product of two cusp forms $f, g \in S_{2}\left(\Gamma_{0}(D), \chi_{D}\right)$ given by

$$
\langle f, g\rangle=\frac{3 / \pi}{\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(D)\right]} \iint_{\mathbb{H} / \Gamma_{0}(D)} f(x+i y) \overline{g(x+i y)} d x d y
$$

- Distinct newforms are orthogonal with respect to the Petersson inner product.

The Petersson inner product (2/2)

- From the decomposition of $C(z)=\theta_{Q}(z)-E(z)$ we get

$$
\langle C(z), C(z)\rangle=\sum_{i=1}^{s}\left|c_{i}\right|^{2}\left\langle g_{i}, g_{i}\right\rangle
$$

The Petersson inner product (2/2)

- From the decomposition of $C(z)=\theta_{Q}(z)-E(z)$ we get

$$
\langle C(z), C(z)\rangle=\sum_{i=1}^{s}\left|c_{i}\right|^{2}\left\langle g_{i}, g_{i}\right\rangle
$$

- Step 1: Bound from below $\left\langle g_{i}, g_{i}\right\rangle$ from an arbitrary newform g_{i}.

The Petersson inner product (2/2)

- From the decomposition of $C(z)=\theta_{Q}(z)-E(z)$ we get

$$
\langle C(z), C(z)\rangle=\sum_{i=1}^{s}\left|c_{i}\right|^{2}\left\langle g_{i}, g_{i}\right\rangle
$$

- Step 1: Bound from below $\left\langle g_{i}, g_{i}\right\rangle$ from an arbitrary newform g_{i}.
- Step 2: Bound from above $\langle C(z), C(z)\rangle$.

Intro to L-functions

- An L-function $L(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ must satisfy the following properties:

Intro to L-functions

- An L-function $L(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ must satisfy the following properties:
- There is a meromorphic continuation of $L(s)$ to all of \mathbb{C}.

Intro to L-functions

- An L-function $L(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ must satisfy the following properties:
- There is a meromorphic continuation of $L(s)$ to all of \mathbb{C}.
- The function $L(s)$ has an Euler product, a factorization

$$
L(s)=\prod_{p \text { prime }} \prod_{i=1}^{d}\left(1-\alpha_{i, d} p^{-s}\right)^{-1}
$$

Intro to L-functions

- An L-function $L(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$ must satisfy the following properties:
- There is a meromorphic continuation of $L(s)$ to all of \mathbb{C}.
- The function $L(s)$ has an Euler product, a factorization

$$
L(s)=\prod_{p \text { prime }} \prod_{i=1}^{d}\left(1-\alpha_{i, d} p^{-s}\right)^{-1}
$$

- There's a functional equation relating $L(s)$ and $L(k-s)$.

Elliptic curve L-functions

- If $E: y^{2}=x^{3}+A x+B$, then the L-series of E is $L(E, s)=\sum \frac{a_{n}(E)}{n^{s}}$. If p is prime, $a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$.

Elliptic curve L-functions

- If $E: y^{2}=x^{3}+A x+B$, then the L-series of E is $L(E, s)=\sum \frac{a_{n}(E)}{n^{s}}$. If p is prime, $a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$.
- The function $L(E, s)$ has an analytic continuation to all of \mathbb{C}. Also,

$$
L(E, s)=\prod_{p}\left(1-a_{p}(E) p^{-s}+p^{1-2 s}\right)^{-1} .
$$

Elliptic curve L-functions

- If $E: y^{2}=x^{3}+A x+B$, then the L-series of E is $L(E, s)=\sum \frac{a_{n}(E)}{n^{s}}$. If p is prime, $a_{p}(E)=p+1-\left|E\left(\mathbb{F}_{p}\right)\right|$.
- The function $L(E, s)$ has an analytic continuation to all of \mathbb{C}. Also,

$$
L(E, s)=\prod_{p}\left(1-a_{p}(E) p^{-s}+p^{1-2 s}\right)^{-1}
$$

- If $\Lambda(s)=N(E)^{s / 2}(2 \pi)^{-s} \Gamma(s) L(E, s)$, then $\Lambda(s)=\epsilon \Lambda(2-s)$, where $\epsilon \in\{1,-1\}$.

Approximate functional equation

- The most relevant property of L-functions for us is the approximate functional equation - a quickly converging series that gives a value of $L(E, s)$.

Approximate functional equation

- The most relevant property of L-functions for us is the approximate functional equation - a quickly converging series that gives a value of $L(E, s)$.
- For an elliptic curve L-function, this formula gives

$$
L(E, 1)=(1+\epsilon) \sum_{n=1}^{\infty} \frac{a_{n}(E)}{n} e^{-\frac{2 \pi n}{\sqrt{N(E)}}}
$$

Approximate functional equation

- The most relevant property of L-functions for us is the approximate functional equation - a quickly converging series that gives a value of $L(E, s)$.
- For an elliptic curve L-function, this formula gives

$$
L(E, 1)=(1+\epsilon) \sum_{n=1}^{\infty} \frac{a_{n}(E)}{n} e^{-\frac{2 \pi n}{\sqrt{N(E)}}}
$$

- This allows one to quickly compute $L(E, 1)$.

Rankin-Selberg L-functions

- If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ and $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$, the Rankin-Selberg L-function is (approximately)

$$
L(f \otimes g, s)=\sum_{n=1}^{\infty} \frac{a(n) b(n)}{n^{s}}
$$

Rankin-Selberg L-functions

- If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ and $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$, the Rankin-Selberg L-function is (approximately)

$$
L(f \otimes g, s)=\sum_{n=1}^{\infty} \frac{a(n) b(n)}{n^{s}}
$$

- The Petersson inner product of f and g is essentially the residue of $L(f \otimes g, s)$ at $s=1$.

Rankin-Selberg L-functions

- If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ and $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$, the Rankin-Selberg L-function is (approximately)

$$
L(f \otimes g, s)=\sum_{n=1}^{\infty} \frac{a(n) b(n)}{n^{s}} .
$$

- The Petersson inner product of f and g is essentially the residue of $L(f \otimes g, s)$ at $s=1$.
- We require the exact description of local factors of $L(f \otimes g, s)$ and the precise form of the functional equation.

Relation with inner product

- For newforms $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ and $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$, we have

$$
\begin{equation*}
L(f \otimes g, s)=\sum_{n=1}^{\infty}\left(\sum_{\substack{m \mid n \\ n / m \text { is a square }}} \frac{2^{\omega(n, D)} \operatorname{Re}(a(m) b(m))}{m}\right) \frac{1}{n^{s}} . \tag{}
\end{equation*}
$$

Relation with inner product

- For newforms $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ and $g(z)=\sum_{n=1}^{\infty} b(n) q^{n}$, we have

$$
L(f \otimes g, s)=\sum_{n=1}^{\infty}\left(\sum_{\substack{m \mid n \\ n / m \text { is a square }}} \frac{2^{\omega(n, D)} \operatorname{Re}(a(m) b(m))}{m}\right) \frac{1}{n^{s}} .
$$

- The residue at $s=1$ of $L(f \otimes \bar{f}, s)$ is

$$
\frac{8 \pi^{4}}{3}\left(\prod_{p \mid N} 1+\frac{1}{p}\right)\langle f, f\rangle
$$

Modular forms with complex multiplication

- We say that a newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ has complex multiplication if there is some discriminant D so that $\chi_{D}(p)=-1$ implies that $a(p)=0$.

Modular forms with complex multiplication

- We say that a newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ has complex multiplication if there is some discriminant D so that $\chi_{D}(p)=-1$ implies that $a(p)=0$.
- Modular forms with complex multiplication come from Hecke Grössencharacters associated to imaginary quadratic fields.

Modular forms with complex multiplication

- We say that a newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ has complex multiplication if there is some discriminant D so that $\chi_{D}(p)=-1$ implies that $a(p)=0$.
- Modular forms with complex multiplication come from Hecke Grössencharacters associated to imaginary quadratic fields.
- Given a discriminant $D(Q)$, it is not difficult to explicitly enumerate the newforms f with complex multiplication in $S_{2}\left(\Gamma_{0}(D(Q)), \chi_{D(Q)}\right)$ and compute $\langle f, f\rangle$.

Lower bound on inner product

- Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \bar{f}, s)$ cannot have a real zero close to $s=1$.

Lower bound on inner product

- Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \bar{f}, s)$ cannot have a real zero close to $s=1$.
- We make their argument effective in this case. This yields a lower bound on $\operatorname{Res}_{s=1} L(f \otimes \bar{f}, s)$.

Lower bound on inner product

- Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \bar{f}, s)$ cannot have a real zero close to $s=1$.
- We make their argument effective in this case. This yields a lower bound on $\operatorname{Res}_{s=1} L(f \otimes \bar{f}, s)$.
- For non-CM f we get

$$
\operatorname{Res}_{s=1} L(f \otimes \bar{f}, s)>\frac{1}{26 \log (N)}
$$

Approximate functional equation

- For a newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$, we have

$$
\langle f, f\rangle=\frac{1}{N \prod_{p \mid N}(1+1 / p)} \sum_{n=1}^{\infty} \frac{2^{\omega(\operatorname{gcd}(n, N))}|a(n)|^{2}}{n} \sum_{d=1}^{\infty} \psi\left(d \sqrt{\frac{n}{N}}\right)
$$

Approximate functional equation

- For a newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$, we have

$$
\langle f, f\rangle=\frac{1}{N \prod_{p \mid N}(1+1 / p)} \sum_{n=1}^{\infty} \frac{2^{\omega(g c d(n, N))}|a(n)|^{2}}{n} \sum_{d=1}^{\infty} \psi\left(d \sqrt{\frac{n}{N}}\right)
$$

- Here,

$$
\psi(x)=-\frac{6}{\pi} x K_{1}(4 \pi x)+24 x^{2} K_{0}(4 \pi x)
$$

Extension to arbitrary cusp forms

- If $C_{1}=\sum_{i=1}^{s} c_{i} g_{i}$ and $C_{2}=\sum_{j=1}^{s} d_{j} g_{j}$ are two arbitrary cusp forms, define

$$
L\left(C_{1} \otimes C_{2}, s\right)=\sum_{i=1}^{s} \sum_{j=1}^{s} c_{i} d_{j} L\left(g_{i} \otimes g_{j}, s\right)
$$

Extension to arbitrary cusp forms

- If $C_{1}=\sum_{i=1}^{s} c_{i} g_{i}$ and $C_{2}=\sum_{j=1}^{s} d_{j} g_{j}$ are two arbitrary cusp forms, define

$$
L\left(C_{1} \otimes C_{2}, s\right)=\sum_{i=1}^{s} \sum_{j=1}^{s} c_{i} d_{j} L\left(g_{i} \otimes g_{j}, s\right)
$$

- We still have that the residue at $s=1$ of $L\left(C_{1} \otimes C_{2}, s\right)$ is (essentially) $\left\langle C_{1}, C_{2}\right\rangle$.

Extension to arbitrary cusp forms

- If $C_{1}=\sum_{i=1}^{s} c_{i} g_{i}$ and $C_{2}=\sum_{j=1}^{s} d_{j} g_{j}$ are two arbitrary cusp forms, define

$$
L\left(C_{1} \otimes C_{2}, s\right)=\sum_{i=1}^{s} \sum_{j=1}^{s} c_{i} d_{j} L\left(g_{i} \otimes g_{j}, s\right)
$$

- We still have that the residue at $s=1$ of $L\left(C_{1} \otimes C_{2}, s\right)$ is (essentially) $\left\langle C_{1}, C_{2}\right\rangle$.
- Is there a simple formula for the coefficients of $L\left(C_{1} \otimes C_{2}, s\right)$ in terms of those of C_{1} and C_{2} ?

Bilinearity, or lack thereof

- Not in general. We can define two subspaces of $S_{2}\left(\Gamma_{0}(D), \chi_{D}\right)$. For $\epsilon \in\{ \pm 1\}$, let

$$
S_{2}^{\epsilon}\left(\Gamma_{0}(D), \chi_{D}\right)=\left\{\sum c(n) q^{n}: c(n)=0 \text { if } \chi_{D}(n)=-\epsilon\right\} .
$$

Bilinearity, or lack thereof

- Not in general. We can define two subspaces of $S_{2}\left(\Gamma_{0}(D), \chi_{D}\right)$. For $\epsilon \in\{ \pm 1\}$, let

$$
S_{2}^{\epsilon}\left(\Gamma_{0}(D), \chi_{D}\right)=\left\{\sum c(n) q^{n}: c(n)=0 \text { if } \chi_{D}(n)=-\epsilon\right\} .
$$

- If C_{1} and C_{2} are both in S_{2}^{+}or S_{2}^{-}, formula $(* *)$ gives the formula for $L\left(C_{1} \otimes C_{2}, s\right)$.

Bilinearity, or lack thereof

- Not in general. We can define two subspaces of $S_{2}\left(\Gamma_{0}(D), \chi_{D}\right)$. For $\epsilon \in\{ \pm 1\}$, let

$$
S_{2}^{\epsilon}\left(\Gamma_{0}(D), \chi_{D}\right)=\left\{\sum c(n) q^{n}: c(n)=0 \text { if } \chi_{D}(n)=-\epsilon\right\} .
$$

- If C_{1} and C_{2} are both in S_{2}^{+}or S_{2}^{-}, formula ($* *$) gives the formula for $L\left(C_{1} \otimes C_{2}, s\right)$.
- If $C_{1} \in S_{2}^{+}$and $C_{2} \in S_{2}^{-}$, then $L\left(C_{1} \otimes C_{2}, s\right)=0$ and formula $(* *)$ doesn't work.

Bounding $\langle C, C\rangle$

- Bad news: If $\theta_{Q}=E+C$, it needs not be true that C is in either S_{2}^{+}or S_{2}^{-}.

Bounding $\langle C, C\rangle$

- Bad news: If $\theta_{Q}=E+C$, it needs not be true that C is in either S_{2}^{+}or S_{2}^{-}.
- But there's a trick. Define $Q^{*}(\vec{x})=\frac{1}{2} \vec{x}^{T} N(Q)^{-1} A \vec{x}$, and $\theta_{Q^{*}}(z)=E^{*}(z)+C^{*}(z)$.

Bounding $\langle C, C\rangle$

- Bad news: If $\theta_{Q}=E+C$, it needs not be true that C is in either S_{2}^{+}or S_{2}^{-}.
- But there's a trick. Define $Q^{*}(\vec{x})=\frac{1}{2} \vec{x}^{T} N(Q)^{-1} A \vec{x}$, and $\theta_{Q^{*}}(z)=E^{*}(z)+C^{*}(z)$.
- The form Q^{*} has determinant $D(Q)^{3}$, level $N(Q)$. Also, $\langle C, C\rangle=D(Q)\left\langle C^{*}, C^{*}\right\rangle$.

Bounding $\langle C, C\rangle$

- Bad news: If $\theta_{Q}=E+C$, it needs not be true that C is in either S_{2}^{+}or S_{2}^{-}.
- But there's a trick. Define $Q^{*}(\vec{x})=\frac{1}{2} \vec{x}^{T} N(Q)^{-1} A \vec{x}$, and $\theta_{Q^{*}}(z)=E^{*}(z)+C^{*}(z)$.
- The form Q^{*} has determinant $D(Q)^{3}$, level $N(Q)$. Also, $\langle C, C\rangle=D(Q)\left\langle C^{*}, C^{*}\right\rangle$.
- The form $C^{*} \in S_{2}^{-}\left(\Gamma_{0}(D(Q)), \chi_{D(Q)}\right)$.

Exercise 6

- Let Q be a positive-definite quaternary form with $D(Q)$ a fundamental discriminant.

Exercise 6

- Let Q be a positive-definite quaternary form with $D(Q)$ a fundamental discriminant.
- Factor $\chi_{D(Q)}=\prod_{p \mid 2 D(Q)} \chi_{p}$ as a product of Dirichlet characters with prime power moduli. Let $\epsilon_{p}(Q)$ be the Hasse invariant of Q / \mathbb{Q}_{p}.

Exercise 6

- Let Q be a positive-definite quaternary form with $D(Q)$ a fundamental discriminant.
- Factor $\chi_{D(Q)}=\prod_{p \mid 2 D(Q)} \chi_{p}$ as a product of Dirichlet characters with prime power moduli. Let $\epsilon_{p}(Q)$ be the Hasse invariant of Q / \mathbb{Q}_{p}.
- Show that if $p \mid 2 D(Q)$ is an odd prime and m is a positive integer coprime to p represented by Q^{*}, then $\chi_{p}(m)=\epsilon_{p}(Q)$. Show that if m is an odd integer represented by Q^{*}, then $\chi_{2}(m)=-\epsilon_{2}(Q)$. Conclude that if m is represented by Q^{*}, then either $\chi_{D}(m)=0$ or $\chi_{D}(m)=-1$.

Explicit computational bound on C_{Q}

- We can use formula $(* *)$ to estimate $\left\langle C^{*}, C^{*}\right\rangle$.

Explicit computational bound on C_{Q}

- We can use formula $(* *)$ to estimate $\left\langle C^{*}, C^{*}\right\rangle$.
- We find a number B so that $\langle g, g\rangle \geq B$ for all newforms $g \in S_{2}$.

Explicit computational bound on C_{Q}

- We can use formula $(* *)$ to estimate $\left\langle C^{*}, C^{*}\right\rangle$.
- We find a number B so that $\langle g, g\rangle \geq B$ for all newforms $g \in S_{2}$.
- We get that

$$
C_{Q} \leq \sqrt{\frac{D(Q)\left\langle C^{*}, C^{*}\right\rangle \operatorname{dim} S_{2}}{B}} .
$$

Example (1/2)

- For

$$
Q(x, y, z, w)=x^{2}+3 y^{2}+3 y z+3 y w+5 z^{2}+z w+34 w^{2}
$$

we have $D(Q)=6780$.

Example (1/2)

- For

$$
Q(x, y, z, w)=x^{2}+3 y^{2}+3 y z+3 y w+5 z^{2}+z w+34 w^{2}
$$

we have $D(Q)=6780$.

- The space $S_{2}\left(\Gamma_{0}(6780), \chi_{6780}\right)$ has four Galois-orbits of newforms of sizes 4, 4, 40, and 1312 .

Example (1/2)

- For

$$
Q(x, y, z, w)=x^{2}+3 y^{2}+3 y z+3 y w+5 z^{2}+z w+34 w^{2}
$$

we have $D(Q)=6780$.

- The space $S_{2}\left(\Gamma_{0}(6780), \chi_{6780}\right)$ has four Galois-orbits of newforms of sizes 4, 4, 40, and 1312 .
- We find that for all newforms g,

$$
\langle g, g\rangle \geq 1.019 \cdot 10^{-5}
$$

Example (2/2)

- We compute the first 101700 coefficients of $\theta_{Q^{*}}(z)$ and $E^{*}(z)$. We use this to find that

$$
0.01066 \leq\langle C, C\rangle \leq 0.01079
$$

Example (2/2)

- We compute the first 101700 coefficients of $\theta_{Q^{*}}(z)$ and $E^{*}(z)$. We use this to find that

$$
0.01066 \leq\langle C, C\rangle \leq 0.01079
$$

- This gives $C_{Q} \leq 1199.86$. It follows that Q represents every odd number larger than $8.315 \cdot 10^{16}$. These computations take 3 minutes and 50 seconds.

Example (2/2)

- We compute the first 101700 coefficients of $\theta_{Q^{*}}(z)$ and $E^{*}(z)$. We use this to find that

$$
0.01066 \leq\langle C, C\rangle \leq 0.01079
$$

- This gives $C_{Q} \leq 1199.86$. It follows that Q represents every odd number larger than $8.315 \cdot 10^{16}$. These computations take 3 minutes and 50 seconds.
- Checking up to this bound requires 22 minutes and 29 seconds. We find that Q represents all odd numbers.

Overview of proof

- This method exchanges the computational method for computing C_{Q} with theoretical techniques.

Overview of proof

- This method exchanges the computational method for computing C_{Q} with theoretical techniques.
- These allow us to prove some general results.

Overview of proof

- This method exchanges the computational method for computing C_{Q} with theoretical techniques.
- These allow us to prove some general results.
- Next, I'll give an overview of the proof of Theorem 3, which states that if $D(Q)$ is a fundamental discriminant, and n is locally represented by Q with $n \gg D(Q)^{2+\epsilon}$, then n is represented.

Proof of Theorem 3 - Eisenstein part

- Let Q be a quaternary form with $D(Q)$ a fundamental discriminant. Recall that $r_{Q}(n)=a_{E}(n)+a_{C}(n)$.

Proof of Theorem 3 - Eisenstein part

- Let Q be a quaternary form with $D(Q)$ a fundamental discriminant. Recall that $r_{Q}(n)=a_{E}(n)+a_{C}(n)$.
- The form Q is not anisotropic at any prime. Also,

$$
a_{E}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}
$$

if n is locally represented.

Proof of Theorem 3 - Cusp form part

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$.

Proof of Theorem 3 - Cusp form part

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$.
- Using the Petersson inner product theory, we have

$$
C_{Q} \leq \sqrt{\frac{\langle C, C\rangle\left(\operatorname{dim} S_{2}\left(\Gamma_{0}(D(Q)), \chi_{D(Q)}\right)\right)}{B}},
$$

where $B=\min _{g}$ a newform $\langle g, g\rangle$.

Proof of Theorem 3 - Cusp form part

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$.
- Using the Petersson inner product theory, we have

$$
C_{Q} \leq \sqrt{\frac{\langle C, C\rangle\left(\operatorname{dim} S_{2}\left(\Gamma_{0}(D(Q)), \chi_{D(Q)}\right)\right)}{B}},
$$

where $B=\min _{g}$ a newform $\langle g, g\rangle$.

- We can give an ineffective lower bound $B \gg D(Q)^{-\epsilon}$.

Proof of Theorem 3 - Petersson norm

- Letting Q^{*} be the dual form to Q, and $\theta_{Q^{*}}=E^{*}+C^{*}$, we get

$$
\langle C, C\rangle=D(Q)\left\langle C^{*}, C^{*}\right\rangle .
$$

Proof of Theorem 3 - Petersson norm

- Letting Q^{*} be the dual form to Q, and $\theta_{Q^{*}}=E^{*}+C^{*}$, we get

$$
\langle C, C\rangle=D(Q)\left\langle C^{*}, C^{*}\right\rangle
$$

- Therefore,

$$
\langle C, C\rangle=\frac{D(Q)}{\sigma(D(Q))} \sum_{n=1}^{\infty} \frac{2^{\omega(\operatorname{gcd}(n, D(Q)))} a_{C^{*}}(n)^{2}}{n} \sum_{d=1}^{\infty} \psi\left(d \sqrt{\frac{n}{D(Q)}}\right) .
$$

Claim: $\langle C, C\rangle \ll 1$

- We have $a_{C^{*}}(n)=r_{Q^{*}}(n)-a_{E^{*}}(n)$ and so $a_{C^{*}}(n)^{2} \ll r_{Q^{*}}(n)^{2}+a_{E^{*}}(n)^{2}$. The first term is much bigger than the second.

Claim: $\langle C, C\rangle \ll 1$

- We have $a_{C^{*}}(n)=r_{Q^{*}}(n)-a_{E^{*}}(n)$ and so $a_{C^{*}}(n)^{2} \ll r_{Q^{*}}(n)^{2}+a_{E^{*}}(n)^{2}$. The first term is much bigger than the second.
- The exponential decay of ψ means that the contribution of terms with $n \gg D(Q) \log ^{2}(D(Q))$ is small (like $O\left(D(Q)^{-11}\right)$).

Claim: $\langle C, C\rangle \ll 1$

- We have $a_{C^{*}}(n)=r_{Q^{*}}(n)-a_{E^{*}}(n)$ and so $a_{C^{*}}(n)^{2} \ll r_{Q^{*}}(n)^{2}+a_{E^{*}}(n)^{2}$. The first term is much bigger than the second.
- The exponential decay of ψ means that the contribution of terms with $n \gg D(Q) \log ^{2}(D(Q))$ is small (like $O\left(D(Q)^{-11}\right)$).
- The terms with $n \ll D(Q) \log ^{2}(D(Q))$ are basically

$$
\sum_{n=1}^{c D(Q) \log ^{2}(D(Q))} \frac{r_{Q^{*}}(n)^{2}}{n}
$$

Trick

- Using partial summation, we can write this as

$$
\int_{1}^{\infty} \frac{1}{t^{2}}\left(\sum_{n \leq \min \left(t, c D(Q) \log ^{2}(D(Q))\right)} r_{Q^{*}}(n)^{2}\right) d t
$$

Trick

- Using partial summation, we can write this as

$$
\int_{1}^{\infty} \frac{1}{t^{2}}\left(\sum_{n \leq \min \left(t, c D(Q) \log ^{2}(D(Q))\right)} r_{Q^{*}}(n)^{2}\right) d t
$$

- The best way to bound $\sum_{n \leq t} r_{Q^{*}}(n)^{2}$ is to use the inequality

$$
\sum_{n \leq t} r_{Q^{*}}(n)^{2} \leq\left(\sum_{n \leq t} r_{Q^{*}}(n)\right) \cdot \max _{n \leq t} r_{Q^{*}}(n)
$$

Proof of Theorem 3

Result

- We have $\sum_{n \leq t} r_{Q^{*}}(n) \ll \max \left(\sqrt{t}, \frac{t^{2}}{D(Q)^{3 / 2}}\right)$.

Result

- We have $\sum_{n \leq t} r_{Q^{*}}(n) \ll \max \left(\sqrt{t}, \frac{t^{2}}{D(Q)^{3 / 2}}\right)$.
- We have

$$
\max _{n \leq t} r_{Q^{*}}(n) \ll \begin{cases}1 & x \leq D(Q)^{1 / 2} \\ \frac{x^{1 / 2}}{D(Q)^{1 / 4}} & D(Q)^{1 / 2} \leq x \leq D(Q)^{5 / 6} \\ \frac{x}{D(Q)^{2 / 3}} & D(Q)^{5 / 6} \leq x \leq D(Q)^{11 / 12} \\ \frac{x^{3 / 2}}{D(Q)^{9 / 8}} & x \geq D(Q)^{11 / 12}\end{cases}
$$

Conclusion

- In the end, we find that $\langle C, C\rangle \ll 1$.

Conclusion

- In the end, we find that $\langle C, C\rangle \ll 1$.
- Not only that, the main contribution to $\langle C, C\rangle$ comes from very small n (like $n \ll D(Q)^{\epsilon}$).

Summary of proof $(1 / 2)$

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$ and

$$
C_{Q}=\sqrt{\frac{\langle C, C\rangle\left(\operatorname{dim} S_{2}\right)}{B}}
$$

Summary of proof (1/2)

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$ and

$$
C_{Q}=\sqrt{\frac{\langle C, C\rangle\left(\operatorname{dim} S_{2}\right)}{B}}
$$

- We have $\langle C, C\rangle \ll 1$, $\operatorname{dim} S_{2} \ll D(Q)$ and $B \gg D(Q)^{-\epsilon}$. Thus, $C_{Q} \ll D(Q)^{1 / 2+\epsilon}$.

Summary of proof (1/2)

- We have $\left|a_{C}(n)\right| \leq C_{Q} d(n) \sqrt{n}$ and

$$
C_{Q}=\sqrt{\frac{\langle C, C\rangle\left(\operatorname{dim} S_{2}\right)}{B}} .
$$

- We have $\langle C, C\rangle \ll 1$, $\operatorname{dim} S_{2} \ll D(Q)$ and $B \gg D(Q)^{-\epsilon}$. Thus, $C_{Q} \ll D(Q)^{1 / 2+\epsilon}$.
- Hence, $\left|a_{C}(n)\right| \ll D(Q)^{1 / 2+\epsilon} n^{1 / 2+\epsilon}$.

Summary of proof $(2 / 2)$

- Recall that $a_{E}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$.

Summary of proof $(2 / 2)$

- Recall that $a_{E}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$.
- Thus,

$$
r_{Q}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}-D(Q)^{1 / 2+\epsilon} n^{1 / 2+\epsilon}
$$

Summary of proof (2/2)

- Recall that $a_{E}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$.
- Thus,

$$
r_{Q}(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}-D(Q)^{1 / 2+\epsilon} n^{1 / 2+\epsilon}
$$

- If $n \gg D(Q)^{2+\epsilon}, r_{Q}(n)>0$ and n is represented by Q.

Thank you!

- Suppose Q is a positive-definite, quaternary quadratic form, and $D(Q)$ is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

Thank you!

- Suppose Q is a positive-definite, quaternary quadratic form, and $D(Q)$ is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.
- No good generalization of this result is known for forms with $D(Q)$ not a fundamental discriminant.

Thank you!

- Suppose Q is a positive-definite, quaternary quadratic form, and $D(Q)$ is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.
- No good generalization of this result is known for forms with $D(Q)$ not a fundamental discriminant.
- More details can be found in the paper at http://arxiv.org/abs/1111.0979.

