Integers represented by positive-definite quadratic forms - the modular approach

Jeremy Rouse

Conference on aspects of the algebraic and analytic theory of quadratic forms University of Georgia July 25, 2017

- 4 同 2 4 日 2 4 日 2

Summary of last time

• If Q is a quaternary quadratic form, $\theta_Q(z) = \sum r_Q(n)q^n$ is a modular form.

< ロ > < 四 > < 臣 > < 臣 > 、

Э

Summary of last time

• If Q is a quaternary quadratic form, $\theta_Q(z) = \sum r_Q(n)q^n$ is a modular form.

• We can write $r_Q(n) = a_E(n) + a_C(n)$. There are explicit lower bounds on $a_E(n)$ of the form $a_E(n) \ge C_E n^{1-\epsilon}$.

Summary of last time

• If Q is a quaternary quadratic form, $\theta_Q(z) = \sum r_Q(n)q^n$ is a modular form.

• We can write $r_Q(n) = a_E(n) + a_C(n)$. There are explicit lower bounds on $a_E(n)$ of the form $a_E(n) \ge C_E n^{1-\epsilon}$.

• There is a constant C_Q so that $|a_C(n)| \le C_Q d(n)\sqrt{n}$, but computing C_Q explicitly is hard.

소리가 소문가 소문가 소문가

Outline

• Quantitative forms of Tartakowski's theorem

イロト イポト イヨト イヨト

Э

Outline

- Quantitative forms of Tartakowski's theorem
- L-functions

イロト イポト イヨト イヨト

Э

Outline

- Quantitative forms of Tartakowski's theorem
- L-functions
- Bounding C_Q without computing it.

3

Tartakowski's theorem

• Let Q be a positive-definite quadratic form in $r\geq 4$ variables. Then n is represented by Q if

3

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r\geq 4$ variables. Then n is represented by Q if
 - n is locally represented by Q, and

・ 同 ト ・ ヨ ト ・ ヨ ト

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r\geq 4$ variables. Then n is represented by Q if
 - n is locally represented by Q, and
 - *n* is sufficiently large, and

伺下 イヨト イヨト

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \ge 4$ variables. Then n is represented by Q if
 - n is locally represented by Q, and
 - *n* is sufficiently large, and
 - if r = 4, *n* is squarefree.

伺い イヨト イヨト

Tartakowski's theorem

- Let Q be a positive-definite quadratic form in $r \ge 4$ variables. Then n is represented by Q if
 - n is locally represented by Q, and
 - *n* is sufficiently large, and
 - if r = 4, *n* is squarefree.

• Q: For a quaternary form Q, how large is the largest locally represented squarefree n that isn't represented by Q?

(人間) (人) (人) (人) (人)

Notation (1/2)

• Write $Q(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$ where A has integer entries and even diagonal entries.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Notation (1/2)

- Write $Q(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$ where A has integer entries and even diagonal entries.
- Let N(Q) be the smallest positive integer so that $N(Q)A^{-1}$ has integer entries and even diagonal entries. Define $D(Q) = \det(A)$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Notation (1/2)

- Write $Q(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x}$ where A has integer entries and even diagonal entries.
- Let N(Q) be the smallest positive integer so that $N(Q)A^{-1}$ has integer entries and even diagonal entries. Define $D(Q) = \det(A)$.
- Let ||Q|| be the largest entry in the matrix A.

マロト イヨト イヨト

Notation (2/2)

• We write $f(n) \ll g(n)$ if there are constants C_1 and C_2 so that $f(n) \leq C_1 g(n)$ for $n \geq C_2$.

Notation (2/2)

• We write $f(n) \ll g(n)$ if there are constants C_1 and C_2 so that $f(n) \leq C_1 g(n)$ for $n \geq C_2$.

• We write $f(n) \ll n^{k+\epsilon}$ if for all $\epsilon > 0$, $f(n) \leq C_{\epsilon} n^{k+\epsilon}$ if n is large enough.

・ロン ・回 と ・ ヨ と ・

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable QF and n satisfies appropriate local conditions and $n \gg N(Q)^{14+\epsilon}$, then n is represented by Q.

Theorem 1 (Schulze-Pillot, 2001)

If Q is a 4-variable QF and n satisfies appropriate local conditions and $n \gg N(Q)^{14+\epsilon}$, then n is represented by Q.

Theorem 2 (Browning-Dietmann, 2008)

If Q is a 4-variable QF and n satisfies (different) appropriate local conditions and $n \gg D(Q)^2 ||Q||^{8+\epsilon}$, then n is represented by Q.

• A discriminant is an integer $D \equiv 0$ or 1 (mod 4). A fundamental discriminant D is a discriminant with the property that there is no k > 1 so that $k^2|D$ and $\frac{D}{k^2}$ is a discriminant.

・ロン ・回 と ・ヨン ・ヨン

3

• A discriminant is an integer $D \equiv 0$ or 1 (mod 4). A fundamental discriminant D is a discriminant with the property that there is no k > 1 so that $k^2|D$ and $\frac{D}{k^2}$ is a discriminant.

Theorem 3 (R, 2014)

Suppose that Q is a 4-variable QF and D(Q) is a fundamental discriminant. Then, if $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

・ロト ・回ト ・ヨト ・

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable QF. Assume that gcd(n, D(Q)) = 1 and n is locally represented by Q. If

$$n \gg D(Q)^{1+\epsilon} N(Q)^{2+\epsilon},$$

then n is represented by Q.

Results (3/4)

Theorem 4 (R)

Let Q be a 4-variable QF. Assume that gcd(n, D(Q)) = 1 and n is locally represented by Q. If

$$n \gg D(Q)^{1+\epsilon} N(Q)^{2+\epsilon},$$

then n is represented by Q.

Theorem 5 (R)

Let Q be a 4-variable QF. Assume that n is locally represented (but not represented by Q) and $n \gg (D(Q)N(Q))^{3+\epsilon}$. Then there is an anisotropic prime p so that $p^2|n$ and np^{2k} is not represented for any $k \ge 0$.

Results (4/4)

Theorem 6 (R-Thompson)

Suppose that Q is a 4-variable QF and D(Q) = p is prime. Then

$$\sum_{\substack{n\\r_Q(n)=0}}^n n \ll p^3.$$

ヘロト 人間ト 人造ト 人造ト

Э

r

Results (4/4)

Theorem 6 (R-Thompson)

Suppose that Q is a 4-variable QF and D(Q) = p is prime. Then

$$\sum_{\substack{n \\ p(n)=0}} n \ll p^3.$$

Theorem 7 (R-Thompson)

Let p = 8t + 5 be prime and

$$Q(x, y, z, w) = x^{2} + xy + xz + xw + y^{2} + yz + yw + z^{2} + zw + tw^{2}.$$

Then D(Q) = p and the largest positive integer not represented by Q is the largest positive integer m < t that is not of the form $4^k(16\ell + 14)$.

The Petersson inner product (1/2)

• Instead of exactly computing C_Q , we derive an upper bound for it with less computation. This method works only when D(Q) = N(Q) is a fundamental discriminant.

・ロン ・回 と ・ヨン ・ヨン

The Petersson inner product (1/2)

• Instead of exactly computing C_Q , we derive an upper bound for it with less computation. This method works only when D(Q) = N(Q) is a fundamental discriminant.

• We use the Petersson inner product of two cusp forms $f, g \in S_2(\Gamma_0(D), \chi_D)$ given by

$$\langle f,g\rangle = \frac{3/\pi}{[\operatorname{SL}_2(\mathbb{Z}):\Gamma_0(D)]} \iint_{\mathbb{H}/\Gamma_0(D)} f(x+iy)\overline{g(x+iy)} \, dx \, dy.$$

・ 同下 ・ ヨト ・ ヨト

The Petersson inner product (1/2)

• Instead of exactly computing C_Q , we derive an upper bound for it with less computation. This method works only when D(Q) = N(Q) is a fundamental discriminant.

• We use the Petersson inner product of two cusp forms $f, g \in S_2(\Gamma_0(D), \chi_D)$ given by

$$\langle f,g \rangle = \frac{3/\pi}{[\operatorname{SL}_2(\mathbb{Z}):\Gamma_0(D)]} \iint_{\mathbb{H}/\Gamma_0(D)} f(x+iy)\overline{g(x+iy)} \, dx \, dy.$$

• Distinct newforms are orthogonal with respect to the Petersson inner product.

イロト イポト イヨト イヨト

The Petersson inner product (2/2)

• From the decomposition of $C(z) = \theta_Q(z) - E(z)$ we get

$$\langle C(z), C(z) \rangle = \sum_{i=1}^{s} |c_i|^2 \langle g_i, g_i \rangle.$$

・ロト ・四ト ・ヨト ・ヨト

The Petersson inner product (2/2)

• From the decomposition of $C(z) = \theta_Q(z) - E(z)$ we get

$$\langle C(z), C(z) \rangle = \sum_{i=1}^{s} |c_i|^2 \langle g_i, g_i \rangle.$$

• Step 1: Bound from below $\langle g_i, g_i \rangle$ from an arbitrary newform g_i .

The Petersson inner product (2/2)

• From the decomposition of $C(z) = \theta_Q(z) - E(z)$ we get

$$\langle C(z), C(z) \rangle = \sum_{i=1}^{s} |c_i|^2 \langle g_i, g_i \rangle.$$

• Step 1: Bound from below $\langle g_i, g_i \rangle$ from an arbitrary newform g_i .

• Step 2: Bound from above $\langle C(z), C(z) \rangle$.

(1日) (日) (日)

Intro to L-functions

• An *L*-function $L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ must satisfy the following properties:

ヘロト 人間ト 人造ト 人造ト

Э

Intro to L-functions

- An *L*-function $L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ must satisfy the following properties:
- There is a meromorphic continuation of L(s) to all of \mathbb{C} .

・ロト ・回ト ・ヨト ・

3

Intro to L-functions

- An *L*-function $L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ must satisfy the following properties:
- There is a meromorphic continuation of L(s) to all of \mathbb{C} .
- The function L(s) has an Euler product, a factorization

$$L(s) = \prod_{p \text{ prime}} \prod_{i=1}^{d} (1 - \alpha_{i,d} p^{-s})^{-1}.$$

・ 回 > ・ ヨ > ・ モ >

Intro to L-functions

- An *L*-function $L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ must satisfy the following properties:
- There is a meromorphic continuation of L(s) to all of \mathbb{C} .
- The function L(s) has an Euler product, a factorization

$$L(s) = \prod_{p \text{ prime}} \prod_{i=1}^{d} (1 - \alpha_{i,d} p^{-s})^{-1}.$$

• There's a functional equation relating L(s) and L(k - s).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Elliptic curve L-functions

• If $E: y^2 = x^3 + Ax + B$, then the *L*-series of *E* is $L(E,s) = \sum \frac{a_n(E)}{n^s}$. If *p* is prime, $a_p(E) = p + 1 - |E(\mathbb{F}_p)|$.

・ロン ・回 と ・ ヨ と ・

3
Elliptic curve *L*-functions

• If
$$E: y^2 = x^3 + Ax + B$$
, then the *L*-series of *E* is $L(E,s) = \sum \frac{a_n(E)}{n^s}$. If *p* is prime, $a_p(E) = p + 1 - |E(\mathbb{F}_p)|$.

• The function L(E, s) has an analytic continuation to all of \mathbb{C} . Also,

$$L(E,s) = \prod_{p} (1 - a_{p}(E)p^{-s} + p^{1-2s})^{-1}.$$

(4回) (1日) (日)

Э

Elliptic curve *L*-functions

• If
$$E: y^2 = x^3 + Ax + B$$
, then the *L*-series of *E* is $L(E,s) = \sum \frac{a_n(E)}{n^s}$. If *p* is prime, $a_p(E) = p + 1 - |E(\mathbb{F}_p)|$.

• The function L(E, s) has an analytic continuation to all of \mathbb{C} . Also,

$$L(E,s) = \prod_{p} (1 - a_p(E)p^{-s} + p^{1-2s})^{-1}.$$

• If
$$\Lambda(s) = N(E)^{s/2} (2\pi)^{-s} \Gamma(s) L(E, s)$$
, then $\Lambda(s) = \epsilon \Lambda(2-s)$, where $\epsilon \in \{1, -1\}$.

(4回) (1日) (日)

Э

Approximate functional equation

• The most relevant property of *L*-functions for us is the approximate functional equation – a quickly converging series that gives a value of L(E, s).

(4月) イヨト イヨト

Approximate functional equation

• The most relevant property of *L*-functions for us is the approximate functional equation – a quickly converging series that gives a value of L(E, s).

• For an elliptic curve L-function, this formula gives

$$L(E,1) = (1+\epsilon) \sum_{n=1}^{\infty} \frac{a_n(E)}{n} e^{-\frac{2\pi n}{\sqrt{N(E)}}}.$$

向下 イヨト イヨト

Approximate functional equation

• The most relevant property of *L*-functions for us is the approximate functional equation – a quickly converging series that gives a value of L(E, s).

• For an elliptic curve *L*-function, this formula gives

$$L(E,1) = (1+\epsilon) \sum_{n=1}^{\infty} \frac{a_n(E)}{n} e^{-\frac{2\pi n}{\sqrt{N(E)}}}.$$

• This allows one to quickly compute L(E, 1).

向下 イヨト イヨト

Rankin-Selberg *L*-functions

• If $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ and $g(z) = \sum_{n=1}^{\infty} b(n)q^n$, the Rankin-Selberg *L*-function is (approximately)

$$L(f \otimes g, s) = \sum_{n=1}^{\infty} \frac{a(n)b(n)}{n^s}.$$

・ロン ・回 と ・ヨン ・ヨン

Rankin-Selberg L-functions

• If $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ and $g(z) = \sum_{n=1}^{\infty} b(n)q^n$, the Rankin-Selberg *L*-function is (approximately)

$$L(f \otimes g, s) = \sum_{n=1}^{\infty} \frac{a(n)b(n)}{n^s}.$$

• The Petersson inner product of f and g is essentially the residue of $L(f \otimes g, s)$ at s = 1.

伺下 イヨト イヨト

Rankin-Selberg L-functions

• If $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ and $g(z) = \sum_{n=1}^{\infty} b(n)q^n$, the Rankin-Selberg *L*-function is (approximately)

$$L(f \otimes g, s) = \sum_{n=1}^{\infty} \frac{a(n)b(n)}{n^s}.$$

• The Petersson inner product of f and g is essentially the residue of $L(f \otimes g, s)$ at s = 1.

• We require the exact description of local factors of $L(f \otimes g, s)$ and the precise form of the functional equation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Relation with inner product

• For newforms $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ and $g(z) = \sum_{n=1}^{\infty} b(n)q^n$, we have

$$L(f \otimes g, s) = \sum_{n=1}^{\infty} \left(\sum_{\substack{m \mid n \\ n/m \text{ is a square}}} \frac{2^{\omega(n,D)} \operatorname{Re}\left(a(m)b(m)\right)}{m} \right) \frac{1}{n^s}. \quad (**)$$

・ロン ・聞と ・ほと ・ほと

Relation with inner product

• For newforms $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ and $g(z) = \sum_{n=1}^{\infty} b(n)q^n$, we have

$$L(f \otimes g, s) = \sum_{n=1}^{\infty} \left(\sum_{\substack{m \mid n \\ n/m \text{ is a square}}} \frac{2^{\omega(n,D)} \operatorname{Re}\left(a(m)b(m)\right)}{m} \right) \frac{1}{n^s}. \quad (**)$$

• The residue at s = 1 of $L(f \otimes \overline{f}, s)$ is

$$\frac{8\pi^4}{3}\left(\prod_{p\mid N}1+\frac{1}{p}\right)\langle f,f\rangle.$$

イロト イポト イヨト イヨト

Modular forms with complex multiplication

• We say that a newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ has complex multiplication if there is some discriminant D so that $\chi_D(p) = -1$ implies that a(p) = 0.

イロト イポト イヨト イヨト

Modular forms with complex multiplication

• We say that a newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ has complex multiplication if there is some discriminant D so that $\chi_D(p) = -1$ implies that a(p) = 0.

• Modular forms with complex multiplication come from Hecke Grössencharacters associated to imaginary quadratic fields.

(日) (日) (日)

Modular forms with complex multiplication

• We say that a newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$ has complex multiplication if there is some discriminant D so that $\chi_D(p) = -1$ implies that a(p) = 0.

- Modular forms with complex multiplication come from Hecke Grössencharacters associated to imaginary quadratic fields.
- Given a discriminant D(Q), it is not difficult to explicitly enumerate the newforms f with complex multiplication in $S_2(\Gamma_0(D(Q)), \chi_{D(Q)})$ and compute $\langle f, f \rangle$.

・ロン ・回 と ・ ヨ と ・

Lower bound on inner product

• Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \overline{f}, s)$ cannot have a real zero close to s = 1.

・ 同下 ・ ヨト ・ ヨト

Lower bound on inner product

- Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \overline{f}, s)$ cannot have a real zero close to s = 1.
- We make their argument effective in this case. This yields a lower bound on $\operatorname{Res}_{s=1} L(f \otimes \overline{f}, s)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Lower bound on inner product

- Goldfeld, Hoffstein, and Lieman proved that if f does not have complex multiplication, then $L(f \otimes \overline{f}, s)$ cannot have a real zero close to s = 1.
- We make their argument effective in this case. This yields a lower bound on $\operatorname{Res}_{s=1} L(f \otimes \overline{f}, s)$.
- For non-CM f we get

$$\operatorname{Res}_{s=1} L(f \otimes \overline{f}, s) > \frac{1}{26 \log(N)}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Approximate functional equation

• For a newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$, we have

$$\langle f, f \rangle = rac{1}{N \prod_{p \mid N} (1+1/p)} \sum_{n=1}^{\infty} rac{2^{\omega(\gcd(n,N))} |a(n)|^2}{n} \sum_{d=1}^{\infty} \psi\left(d\sqrt{rac{n}{N}}\right).$$

< ロ > < 四 > < 臣 > < 臣 > 、

Approximate functional equation

• For a newform $f(z) = \sum_{n=1}^{\infty} a(n)q^n$, we have

$$\langle f, f \rangle = \frac{1}{N \prod_{p \mid N} (1+1/p)} \sum_{n=1}^{\infty} \frac{2^{\omega(\gcd(n,N))} |a(n)|^2}{n} \sum_{d=1}^{\infty} \psi\left(d\sqrt{\frac{n}{N}}\right).$$

$$\psi(x) = -\frac{6}{\pi} x K_1(4\pi x) + 24x^2 K_0(4\pi x).$$

ヘロン 人間 とくほと 人間 とう

Extension to arbitrary cusp forms

• If $C_1 = \sum_{i=1}^{s} c_i g_i$ and $C_2 = \sum_{j=1}^{s} d_j g_j$ are two arbitrary cusp forms, define

$$L(C_1 \otimes C_2, s) = \sum_{i=1}^s \sum_{j=1}^s c_i d_j L(g_i \otimes g_j, s).$$

・ロン ・回 と ・ヨン ・ヨン

Extension to arbitrary cusp forms

• If $C_1 = \sum_{i=1}^{s} c_i g_i$ and $C_2 = \sum_{j=1}^{s} d_j g_j$ are two arbitrary cusp forms, define

$$L(C_1 \otimes C_2, s) = \sum_{i=1}^s \sum_{j=1}^s c_i d_j L(g_i \otimes g_j, s).$$

• We still have that the residue at s = 1 of $L(C_1 \otimes C_2, s)$ is (essentially) $\langle C_1, C_2 \rangle$.

Extension to arbitrary cusp forms

• If $C_1 = \sum_{i=1}^{s} c_i g_i$ and $C_2 = \sum_{j=1}^{s} d_j g_j$ are two arbitrary cusp forms, define

$$L(C_1 \otimes C_2, s) = \sum_{i=1}^s \sum_{j=1}^s c_i d_j L(g_i \otimes g_j, s).$$

• We still have that the residue at s = 1 of $L(C_1 \otimes C_2, s)$ is (essentially) $\langle C_1, C_2 \rangle$.

• Is there a simple formula for the coefficients of $L(C_1 \otimes C_2, s)$ in terms of those of C_1 and C_2 ?

(1日) (1日) (日)

Bilinearity, or lack thereof

• Not in general. We can define two subspaces of $S_2(\Gamma_0(D), \chi_D)$. For $\epsilon \in \{\pm 1\}$, let

$$S_2^{\epsilon}(\Gamma_0(D),\chi_D) = \left\{ \sum c(n)q^n : c(n) = 0 \text{ if } \chi_D(n) = -\epsilon \right\}.$$

< ロ > < 四 > < 臣 > < 臣 > 、

Bilinearity, or lack thereof

• Not in general. We can define two subspaces of $S_2(\Gamma_0(D), \chi_D)$. For $\epsilon \in \{\pm 1\}$, let

$$S_2^{\epsilon}(\Gamma_0(D),\chi_D) = \left\{ \sum c(n)q^n : c(n) = 0 \text{ if } \chi_D(n) = -\epsilon \right\}.$$

• If C_1 and C_2 are both in S_2^+ or S_2^- , formula (**) gives the formula for $L(C_1 \otimes C_2, s)$.

イロト イポト イヨト イヨト

Bilinearity, or lack thereof

• Not in general. We can define two subspaces of $S_2(\Gamma_0(D), \chi_D)$. For $\epsilon \in \{\pm 1\}$, let

$$S_2^{\epsilon}(\Gamma_0(D),\chi_D) = \left\{ \sum c(n)q^n : c(n) = 0 \text{ if } \chi_D(n) = -\epsilon \right\}.$$

• If C_1 and C_2 are both in S_2^+ or S_2^- , formula (**) gives the formula for $L(C_1 \otimes C_2, s)$.

• If $C_1 \in S_2^+$ and $C_2 \in S_2^-$, then $L(C_1 \otimes C_2, s) = 0$ and formula (**) doesn't work.

(1日) (日) (日)

Bounding $\langle C, C \rangle$

• Bad news: If $\theta_Q = E + C$, it needs not be true that C is in either S_2^+ or S_2^- .

Bounding $\langle C, C \rangle$

• Bad news: If $\theta_Q = E + C$, it needs not be true that C is in either S_2^+ or S_2^- .

• But there's a trick. Define $Q^*(\vec{x}) = \frac{1}{2}\vec{x}^T N(Q)^{-1}A\vec{x}$, and $\theta_{Q^*}(z) = E^*(z) + C^*(z)$.

・ロト ・回ト ・ヨト ・

Bounding $\langle C, C \rangle$

• Bad news: If $\theta_Q = E + C$, it needs not be true that C is in either S_2^+ or S_2^- .

• But there's a trick. Define $Q^*(\vec{x}) = \frac{1}{2}\vec{x}^T N(Q)^{-1}A\vec{x}$, and $\theta_{Q^*}(z) = E^*(z) + C^*(z)$.

• The form Q^* has determinant $D(Q)^3$, level N(Q). Also, $\langle C, C \rangle = D(Q) \langle C^*, C^* \rangle$.

イロト イポト イヨト イヨト

Bounding $\langle C, C \rangle$

• Bad news: If $\theta_Q = E + C$, it needs not be true that C is in either S_2^+ or S_2^- .

• But there's a trick. Define $Q^*(\vec{x}) = \frac{1}{2}\vec{x}^T N(Q)^{-1} A \vec{x}$, and $\theta_{Q^*}(z) = E^*(z) + C^*(z)$.

• The form Q^* has determinant $D(Q)^3$, level N(Q). Also, $\langle C, C \rangle = D(Q) \langle C^*, C^* \rangle$.

• The form $C^* \in S_2^-(\Gamma_0(D(Q)), \chi_{D(Q)})$.

・ 回 と ・ ヨ と ・ モ と

Exercise 6

• Let Q be a positive-definite quaternary form with D(Q) a fundamental discriminant.

・ロト ・回ト ・ヨト ・ヨト

Э

Exercise 6

- Let Q be a positive-definite quaternary form with D(Q) a fundamental discriminant.
- Factor $\chi_{D(Q)} = \prod_{p|2D(Q)} \chi_p$ as a product of Dirichlet characters with prime power moduli. Let $\epsilon_p(Q)$ be the Hasse invariant of Q/\mathbb{Q}_p .

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Exercise 6

- Let Q be a positive-definite quaternary form with D(Q) a fundamental discriminant.
- Factor $\chi_{D(Q)} = \prod_{p|2D(Q)} \chi_p$ as a product of Dirichlet characters with prime power moduli. Let $\epsilon_p(Q)$ be the Hasse invariant of Q/\mathbb{Q}_p .

• Show that if p|2D(Q) is an odd prime and m is a positive integer coprime to p represented by Q^* , then $\chi_p(m) = \epsilon_p(Q)$. Show that if m is an odd integer represented by Q^* , then $\chi_2(m) = -\epsilon_2(Q)$. Conclude that if m is represented by Q^* , then either $\chi_D(m) = 0$ or $\chi_D(m) = -1$.

・ロン ・回 と ・ヨン ・ヨン

Explicit computational bound on C_Q

• We can use formula (**) to estimate $\langle C^*, C^* \rangle$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Explicit computational bound on C_Q

• We can use formula (**) to estimate $\langle C^*, C^* \rangle$.

• We find a number B so that $\langle g,g\rangle \geq B$ for all newforms $g \in S_2$.

・ロン ・回 と ・ヨン ・ヨン

Explicit computational bound on C_Q

• We can use formula (**) to estimate $\langle C^*, C^* \rangle$.

• We find a number B so that $\langle g,g\rangle \ge B$ for all newforms $g \in S_2$.

• We get that

$$C_Q \leq \sqrt{\frac{D(Q)\langle C^*, C^*
angle \dim S_2}{B}}.$$

(1日) (日) (日)

Example (1/2)

• For

$$Q(x, y, z, w) = x^{2} + 3y^{2} + 3yz + 3yw + 5z^{2} + zw + 34w^{2}$$

we have D(Q) = 6780.

・ロト ・回ト ・ヨト ・ヨト

Э

Example (1/2)

• For

$$Q(x, y, z, w) = x^{2} + 3y^{2} + 3yz + 3yw + 5z^{2} + zw + 34w^{2}$$

we have D(Q) = 6780.

• The space $S_2(\Gamma_0(6780), \chi_{6780})$ has four Galois-orbits of newforms of sizes 4, 4, 40, and 1312.
Example (1/2)

• For

$$Q(x, y, z, w) = x^{2} + 3y^{2} + 3yz + 3yw + 5z^{2} + zw + 34w^{2}$$

we have D(Q) = 6780.

• The space $S_2(\Gamma_0(6780), \chi_{6780})$ has four Galois-orbits of newforms of sizes 4, 4, 40, and 1312.

• We find that for all newforms g,

$$\langle g,g \rangle \geq 1.019 \cdot 10^{-5}.$$

(1日) (日) (日)

3

• We compute the first 101700 coefficients of $\theta_{Q^*}(z)$ and $E^*(z)$. We use this to find that

 $0.01066 \leq \langle C, C \rangle \leq 0.01079.$

• We compute the first 101700 coefficients of $\theta_{Q^*}(z)$ and $E^*(z)$. We use this to find that

 $0.01066 \leq \langle C, C \rangle \leq 0.01079.$

• This gives $C_Q \leq 1199.86$. It follows that Q represents every odd number larger than $8.315 \cdot 10^{16}$. These computations take 3 minutes and 50 seconds.

イロト イポト イヨト イヨト

• We compute the first 101700 coefficients of $\theta_{Q^*}(z)$ and $E^*(z)$. We use this to find that

 $0.01066 \leq \langle C, C \rangle \leq 0.01079.$

• This gives $C_Q \leq 1199.86$. It follows that Q represents every odd number larger than $8.315 \cdot 10^{16}$. These computations take 3 minutes and 50 seconds.

• Checking up to this bound requires 22 minutes and 29 seconds. We find that Q represents all odd numbers.

イロト イポト イヨト イヨト

Overview of proof

• This method exchanges the computational method for computing C_Q with theoretical techniques.

Overview of proof

- This method exchanges the computational method for computing C_Q with theoretical techniques.
- These allow us to prove some general results.

向下 イヨト イヨト

Overview of proof

- This method exchanges the computational method for computing C_Q with theoretical techniques.
- These allow us to prove some general results.
- Next, I'll give an overview of the proof of Theorem 3, which states that if D(Q) is a fundamental discriminant, and *n* is locally represented by Q with $n \gg D(Q)^{2+\epsilon}$, then *n* is represented.

(4月) イヨト イヨト

Proof of Theorem 3 - Eisenstein part

• Let Q be a quaternary form with D(Q) a fundamental discriminant. Recall that $r_Q(n) = a_E(n) + a_C(n)$.

3

Proof of Theorem 3 - Eisenstein part

• Let Q be a quaternary form with D(Q) a fundamental discriminant. Recall that $r_Q(n) = a_E(n) + a_C(n)$.

• The form Q is not anisotropic at any prime. Also,

$$a_E(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$$

if n is locally represented.

向下 イヨト イヨト

Proof of Theorem 3 - Cusp form part

• We have $|a_C(n)| \leq C_Q d(n) \sqrt{n}$.

ヘロン 人間 とくほど 人間 とう

Proof of Theorem 3 - Cusp form part

- We have $|a_C(n)| \leq C_Q d(n) \sqrt{n}$.
- Using the Petersson inner product theory, we have

$$C_Q \leq \sqrt{\frac{\langle C, C \rangle(\dim S_2(\Gamma_0(D(Q)), \chi_{D(Q)}))}{B}},$$

where $B = \min_{g \text{ a newform}} \langle g, g \rangle$.

・ 同下 ・ ヨト ・ ヨト

Proof of Theorem 3 - Cusp form part

• We have
$$|a_C(n)| \leq C_Q d(n) \sqrt{n}$$
.

• Using the Petersson inner product theory, we have

$$C_Q \leq \sqrt{\frac{\langle C, C \rangle (\dim S_2(\Gamma_0(D(Q)), \chi_{D(Q)}))}{B}}$$

where $B = \min_{g \text{ a newform}} \langle g, g \rangle$.

• We can give an *ineffective* lower bound $B \gg D(Q)^{-\epsilon}$.

(人間) (人) (人) (人)

Proof of Theorem 3 - Petersson norm

• Letting Q^* be the dual form to Q, and $\theta_{Q^*} = E^* + C^*$, we get

 $\langle C, C \rangle = D(Q) \langle C^*, C^* \rangle.$

・ロト ・回ト ・ヨト ・

3

Proof of Theorem 3 - Petersson norm

• Letting Q^* be the dual form to Q, and $\theta_{Q^*} = E^* + C^*$, we get

$$\langle C, C \rangle = D(Q) \langle C^*, C^* \rangle.$$

• Therefore,

$$\langle C, C \rangle = \frac{D(Q)}{\sigma(D(Q))} \sum_{n=1}^{\infty} \frac{2^{\omega(\gcd(n,D(Q)))} a_{C^*}(n)^2}{n} \sum_{d=1}^{\infty} \psi\left(d\sqrt{\frac{n}{D(Q)}}\right).$$

Claim: $\langle C, C \rangle \ll 1$

• We have $a_{C^*}(n) = r_{Q^*}(n) - a_{E^*}(n)$ and so $a_{C^*}(n)^2 \ll r_{Q^*}(n)^2 + a_{E^*}(n)^2$. The first term is much bigger than the second.

・ロト ・回ト ・ヨト ・

3

Claim: $\langle C, C \rangle \ll 1$

• We have $a_{C^*}(n) = r_{Q^*}(n) - a_{E^*}(n)$ and so $a_{C^*}(n)^2 \ll r_{Q^*}(n)^2 + a_{E^*}(n)^2$. The first term is much bigger than the second.

• The exponential decay of ψ means that the contribution of terms with $n \gg D(Q) \log^2(D(Q))$ is small (like $O(D(Q)^{-11})$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim: $\langle C, C \rangle \ll 1$

- We have $a_{C^*}(n) = r_{Q^*}(n) a_{E^*}(n)$ and so $a_{C^*}(n)^2 \ll r_{Q^*}(n)^2 + a_{E^*}(n)^2$. The first term is much bigger than the second.
- The exponential decay of ψ means that the contribution of terms with $n \gg D(Q) \log^2(D(Q))$ is small (like $O(D(Q)^{-11})$).
- The terms with $n \ll D(Q) \log^2(D(Q))$ are basically

$$\sum_{n=1}^{cD(Q)\log^{2}(D(Q))} \frac{r_{Q^{*}}(n)^{2}}{n}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Trick

• Using partial summation, we can write this as

$$\int_1^\infty \frac{1}{t^2} \left(\sum_{n \le \min(t, cD(Q) \log^2(D(Q)))} r_{Q^*}(n)^2 \right) dt.$$

《曰》《聞》《臣》《臣》

Trick

• Using partial summation, we can write this as

$$\int_1^\infty \frac{1}{t^2} \left(\sum_{n \leq \min(t, cD(Q)\log^2(D(Q)))} r_{Q^*}(n)^2 \right) dt.$$

• The best way to bound $\sum_{n \leq t} r_{Q^*}(n)^2$ is to use the inequality

$$\sum_{n\leq t}r_{Q^*}(n)^2\leq \left(\sum_{n\leq t}r_{Q^*}(n)\right)\cdot \max_{n\leq t}r_{Q^*}(n).$$

回 と く ヨ と く ヨ と

Result

• We have
$$\sum_{n \leq t} r_{Q^*}(n) \ll \max\left(\sqrt{t}, \frac{t^2}{D(Q)^{3/2}}\right)$$
.

メロト メタト メヨト メヨト

Result

• We have
$$\sum_{n \leq t} r_{Q^*}(n) \ll \max\left(\sqrt{t}, \frac{t^2}{D(Q)^{3/2}}\right)$$
.

• We have

$$\max_{n \leq t} r_{Q^*}(n) \ll \begin{cases} 1 & x \leq D(Q)^{1/2} \\ \frac{x^{1/2}}{D(Q)^{1/4}} & D(Q)^{1/2} \leq x \leq D(Q)^{5/6} \\ \frac{x}{D(Q)^{2/3}} & D(Q)^{5/6} \leq x \leq D(Q)^{11/12} \\ \frac{x^{3/2}}{D(Q)^{9/8}} & x \geq D(Q)^{11/12}. \end{cases}$$

イロト イロト イモト イモト

Conclusion

• In the end, we find that $\langle C, C \rangle \ll 1$.

イロト イヨト イヨト イヨト

Conclusion

• In the end, we find that $\langle C, C \rangle \ll 1$.

• Not only that, the main contribution to $\langle C, C \rangle$ comes from very small *n* (like $n \ll D(Q)^{\epsilon}$).

3

Summary of proof (1/2)

• We have $|a_C(n)| \leq C_Q d(n) \sqrt{n}$ and

$$C_Q = \sqrt{\frac{\langle C, C \rangle (\dim S_2)}{B}}.$$

ヘロン 人間 とくほど 人間 とう

Summary of proof (1/2)

• We have $|a_C(n)| \leq C_Q d(n) \sqrt{n}$ and

$$C_Q = \sqrt{\frac{\langle C, C \rangle (\dim S_2)}{B}}.$$

• We have $\langle C, C \rangle \ll 1$, dim $S_2 \ll D(Q)$ and $B \gg D(Q)^{-\epsilon}$. Thus, $C_Q \ll D(Q)^{1/2+\epsilon}$.

(ロ) (同) (E) (E) (E)

Summary of proof (1/2)

• We have $|a_C(n)| \leq C_Q d(n) \sqrt{n}$ and

$$C_Q = \sqrt{\frac{\langle C, C \rangle (\dim S_2)}{B}}.$$

• We have $\langle C, C \rangle \ll 1$, dim $S_2 \ll D(Q)$ and $B \gg D(Q)^{-\epsilon}$. Thus, $C_Q \ll D(Q)^{1/2+\epsilon}$.

• Hence,
$$|a_C(n)| \ll D(Q)^{1/2+\epsilon} n^{1/2+\epsilon}$$
.

(ロ) (同) (E) (E) (E)

Summary of proof (2/2)

• Recall that
$$a_E(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$$
.

イロン イヨン イヨン イヨン

Summary of proof (2/2)

• Recall that
$$a_E(n) \gg \frac{n^{1-\epsilon}}{\sqrt{D(Q)}}$$
.

• Thus,

$$r_Q(n) \gg rac{n^{1-\epsilon}}{\sqrt{D(Q)}} - D(Q)^{1/2+\epsilon} n^{1/2+\epsilon}.$$

Summary of proof (2/2)

• Recall that
$$a_E(n) \gg rac{n^{1-\epsilon}}{\sqrt{D(Q)}}$$
.

• Thus,

$$r_Q(n) \gg rac{n^{1-\epsilon}}{\sqrt{D(Q)}} - D(Q)^{1/2+\epsilon} n^{1/2+\epsilon}.$$

• If $n \gg D(Q)^{2+\epsilon}$, $r_Q(n) > 0$ and n is represented by Q.

(ロ) (同) (E) (E) (E)

Thank you!

• Suppose Q is a positive-definite, quaternary quadratic form, and D(Q) is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

Thank you!

• Suppose Q is a positive-definite, quaternary quadratic form, and D(Q) is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

• No good generalization of this result is known for forms with D(Q) not a fundamental discriminant.

マロト イヨト イヨト

Thank you!

• Suppose Q is a positive-definite, quaternary quadratic form, and D(Q) is a fundamental discriminant. If Q locally represents $n \gg D(Q)^{2+\epsilon}$, then n is represented by Q.

• No good generalization of this result is known for forms with D(Q) not a fundamental discriminant.

• More details can be found in the paper at http://arxiv.org/abs/1111.0979.

・ 同 ト ・ ヨ ト ・ ヨ ト