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1 Introduction

Many public health policies are rooted in findings from medical and epidemiological

studies that often fail to account for health behaviors. We focus on smoking and mor-

tality to demonstrate the importance of modeling behavioral contributions. Smoking

is currently considered the leading preventable cause of death in the United States.

According to the Centers for Disease Control, smoking causes 480,000 deaths each year

and 8.6 million people have at least one serious illness due to smoking. Cigarette smok-

ing is the primary causal factor in lung cancer and is a key risk factor in coronary

heart disease.1 In addition to the obvious negative health consequences of smoking,

the medical and epidemiological literatures contend that quitting smoking has signifi-

cant benefits. For example, ten years after quitting, an individual faces a cancer risk

one-third to one-half as large as if he had continued smoking (Doll et al., 2004). If

a smoker quits smoking before age 40, this is associated with a 90 percent reduction

in the excess mortality associated with smoking (Pirie et al., 2013; Jha et al., 2013).

While we do not dispute that smoking causes significant excess morbidity and mor-

tality, our research suggests that the accepted morbidity and mortality improvements

accompanying smoking cessation may be overstated by as much as 50 percent.

There is ample biological evidence linking smoking to deleterious health outcomes.

Yet, some puzzling aggregate trends demonstrate our concern with the literature’s cal-

culations of these impacts. Over the last twenty-five years adult smoking rates for both

genders have fallen steadily to about half their initial levels, but the incidence of lung

and bronchus cancer has doubled for women while declining for men. This variation

could stem from heterogeneity in individual characteristics among the fifty million for-

mer smokers. While quitting smoking might suspend additional contributions to poor

health, the precise nature of one’s smoking history still predisposes that individual to

cancers, heart disease, and other diseases.2 Our research models smoking behavior and

health outcomes over one’s adult lifetime (ages 30 to 100) while controlling for the

importance of variation in endogenous individual smoking and health histories.

Making accurate assessments of the longevity losses from cigarette smoking and the

longevity gains from smoking cessation has proved difficult because smoking behavior is

a choice. Ideally, the gain/loss predictions should be calculated from observed mortality

differences following random assignment of lifetime smoking behavior. Because random

1For a good review of national trends in cigarette smoking and a summary of smoking-attributable
diseases, see United States Surgeon General (2014).

2An additional explanation for the gender differences in lung cancer rates could be competing risks
from other diseases (Honore and Lleras-Muney, 2006), yet mortality rates from cardiovascular diseases
also fell more steeply for men during this period.
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variation of this kind does not exist, researchers must rely on observational data to mea-

sure the effects of smoking on morbidity and mortality. When using non-experimental

data, however, identification of the causal effect of smoking on mortality is difficult

precisely because observed smoking behavior over one’s lifetime is not random: indi-

viduals initiate smoking, may choose to quit smoking, and sometimes fail at quitting

(i.e., relapse). These endogenous behaviors, which may occur at any age, produce very

different lifetime smoking patterns. Therefore, the first contribution of this paper is

determination of conditional impacts of the varying histories of smoking through joint

estimation of smoking behaviors and health outcomes at frequent intervals over the life

cycle (i.e., smoking histories are not exogenous).

An interrelated concern leading to difficulty in assessment of smoking’s impact is

that morbidity and mortality, while certainly not random, may be attributable to ob-

served and unobserved non-smoking factors. It may be the case that failure to control

for heterogeneity that explains correlation in smoking behavior and other behaviors

that adversely influence health (e.g., excessive alcohol consumption, drug use, poor

nutrition, etc.) leads to an overstatement of the health effects of smoking. Similarly,

ignoring the factors that explain, for example, the inverse smoking/obesity correlation

may understate the influence of smoking. While these correlations may be explained by

observed individual variation, it is quite likely that unobserved characteristics such as

risk-aversion, time preference or self-esteem and unobserved stress and health influence

observed smoking and health patterns over the life cycle.3 The second contribution of

this paper is its generous inclusion of theoretically-justified controls for both observed

(in our data) and unobserved (yet econometrically relevant) individual heterogeneity in

order to uncover the conditional relationship between cigarette smoking and morbid-

ity and mortality outcomes (i.e., confounding factors may influence health outcomes).

Importantly, we allow the unobserved heterogeneity controls to be flexibly correlated

across smoking and morbidity and mortality equations.

To achieve these empirical contributions we leverage a panel dataset of smoking

behavior and health outcomes obtained at frequent intervals (via medical exams and

survey questions) throughout much of the respondent’s adult lifetime. Since the early

1950s, the Framingham Heart Study (FHS) has followed three generations of partici-

pants in order to identify contributors to heart disease.4 Since 1948, most of the 5209

3There is evidence that differences in the health of certain regions of the brain influence the propen-
sity to quit, and that these neural differences also influence other behaviors (Naqvi et al., 2007).

4The original objective of the FHS, directed by National Heart Institute (now known as the National
Heart, Lung, and Blood Institute or NHLBI), was to identify the common factors or characteristics
that contribute to cardiovascular disease (CVD). Additional cohorts — offspring of the original cohort
(1971), a more diverse sample (1994), and a third generation (2002) — have been recruited and are
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subjects of the original cohort have returned to the study every two years (if alive) for

a detailed medical history, physical examination, and laboratory tests. The non-death

attrition rate of only three percent mitigates a typical source of selection bias.

This long-term, ongoing study consists of contemporaneous responses; it relies on

recall of participants only to identify age of smoking initiation. We use 46 years of

longitudinal observations (23 waves) on the male participants of the original cohort to

construct detailed smoking histories (including duration, quits, and relapse). Among

men, an important smoking transition is quitting (or attempts to quit), as most initi-

ation occurs during adolescence. Often, depictions of individual smoking histories rely

on less accurate, retrospective data gathered at a few disperse intervals making accu-

rate identification of quits almost impossible. Our detailed, reliable histories and the

modeling of behavior every two years allow us to simulate a range of quitting behav-

iors — quits at different ages, quits after different smoking durations, and quits with

different cessation lengths — in order to evaluate the resulting impact on lifespan and

cause of death. Additionally, much of the available health information in FHS is gath-

ered during frequent (about every two years) detailed medical exams. Health events

(e.g., diagnoses of heart disease, cancer, and diabetes and cardiovascular disease events

including stroke) are dated and measures of risk factors (e.g., weight, blood pressure,

cholesterol) are documented. With such detailed smoking and health data over time,

we can model the dynamic effects of smoking histories on health as well as the dynamic

effects of health histories on smoking behaviors. In fact, most studies rely on repeated

cross-sections or panel data of only a few years in length, and so are unable to model

dynamic behavior or to adequately include individual heterogeneity.

To estimate the marginal impact of different lifetime smoking patterns on health,

we have four sources of identification. First, we collect new data on historical cigarette

prices and advertising for over a century that we interact with age to get variation across

individuals and time. We provide quasi-experimental evidence that these supply shifters

are causally related to smoking levels. These theoretically-justified variables enter our

behavioral equations (i.e., smoking) but are excluded from our health outcome equations

(as in the simultaneous equation literature). Second, we use variation in the history of

all exogenous explanatory variables captured by our dynamic equation specification (as

in the dynamic panel data literature). Third, we include additional exogenous variables

that explain the jointly-estimated initial condition equations (as in the literature that

accounts for endogenous initial conditions). Finally, we leverage the functional forms of

the non-linear estimators as well as covariance restrictions on the error structure across

being followed. (www.framinghamheartstudy.org).
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equations and over time (as in the structural econometrics literature). We estimate

the parameters of our multi-equation dynamic empirical model via full information

maximum likelihood (FIML).

Figure 1 illustrates the advantages of our methods and these data. Figure 1a depicts

the survival curves, by lifetime smoking pattern, generated using the observed age of

death and smoking history of original cohort participants of the FHS. Figure 1b depicts

survival rates calculated using data simulated from an estimated dynamic model of

smoking behavior and health outcomes that includes the heterogeneity discussed above.

While both figures indicate that smokers have, on average, higher mortality rates than

non-smokers at all ages, the differences between the two groups are noticeably smaller

when we account for non-random selection and confounding (Figure 1b) than when we

simply examine the raw data (Figure 1a).5 We depict similar comparisons in Figures 1c

(observed data) and 1d (simulations from our estimated model) for smokers who quit

by age 50 and never smokers. We discuss endogenous quits in more detail as the paper

proceeds.

As discussed above, we contend that differences between Figures 1a and 1b are

explained by the non-random nature of lifetime smoking patterns and by confounding

factors in the production of health. Our results suggest that our dynamic specification

has sizable impacts on the mortality effects of smoking and smoking cessation. As a

basis for comparison, using the data on smoking and mortality alone, differences in the

distribution of age of death by lifetime smoking behavior suggest that continuing to

smoke reduces mean life expectancy by 9.3 years relative to those who never smoke.

However, simulations from our estimated model show a reduction of just 4.3 years.

We find a similar difference when we condition on cause of death. For example, for

those who die of cardiovascular disease (CVD), the mean age of death is 9.3 years older

for never smokers compared with continual smokers. Our simulations suggest that this

difference is only 4.6 years. We also show that unobserved heterogeneity (UH) matters.6

We find large differences in simulated smoking patterns when we condition on different

unobserved “types”. Overall, our results suggest that smoking does indeed reduce

expected longevity; however, we find that failing to control for heterogeneity in smoking

histories, health histories, and individual unobservables overstates the magnitude of

these reductions.

Our main result – that the expected longevity effects of smoking are overstated

5The same comparisons among current and former smokers reveal qualitatively similar patterns.
6Throughout the paper we will distinguish between observed and unobserved individual heterogene-

ity, yet our emphasis is that “heterogeneity” matters. The variables that we observe are data source
specific and, because no data are perfect, a researcher cannot possibly control for all relevant factors.
For brevity, we abbreviate unobserved heterogeneity by UH henceforth.
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Figure 1: Survival Curves by Lifetime Smoking Pattern
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Notes: Figure 1a depicts the proportion of individuals in our estimation sample who remain alive
at each age. Figure 1b depicts the survival rates of the same individuals as in Figure a. based on
simulations from our preferred model when we impose the two lifetime smoking patterns. Smoker
defines an individual who smoked from initiation until death; never smoker defines an individual
who never smoked. Figures 1c and 1d present survival curves for those who quit by age 50 relative
to never smokers from the data and from simulation, respectively.

by the medical literature – is strongly robust to a variety of modeling choices and

robustness checks. For example, our basic result holds when we modify the morbid-

ity outcomes being modeled, the number of points of support in the distribution of

unobserved heterogeneity, and the modeling of the initial conditions. Furthermore,

functional form alone is not driving our result: the effect of smoking on age of death

in a simple regression drops dramatically after controlling for various time-invariant

individual characteristics.

Our results echo conventional wisdom in some regards: twenty years of smoking

experience has little impact on life expectancy if the individual quits by age 40. Addi-

tionally, we find that quits of five years followed by relapses have little benefit in terms
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of life expectancy. The latter result suggests that cessation programs without follow-up

support for former smokers will not be effective. Indeed, our results are an important

contribution to public health discussions. For example, the Affordable Care Act allows

exchange health insurance plans to charge a 50% surcharge for smokers; if the surcharge

is calculated based on an overstated relationship between smoking and health, then the

surcharge may prevent some smokers from purchasing health insurance. As another

example, due to the associated health benefits from quitting, CBO (2012) projects that

a $0.50 increase in the federal excise tax on cigarettes (fiscal year 2013) would reduce

the federal budget deficit by $3 billion over the following decade.

The next section discusses the current state of knowledge on the health consequences

of smoking, and shows how the approach and rich data that we use advances the

literature. Section 3 describes how we constructed our research sample and details the

structure of these data. We use Section 4 to introduce notation, to explain the empirical

model, and to summarize the variables used in estimation. Section 5 provides results:

parameter estimates, model fit, and simulations. We end with a discussion of the policy

relevance of our findings.

2 Background

2.1 Medical Literature

Research from the epidemiological literature that seeks to understand the impact of

smoking/quitting on mortality uses very limited, if any, empirical strategies to address

bias associated with non-random selection or confounding behaviors. The heavily cited

work of Doll et al. (1994) and Doll et al. (2004) employs panel data on British doctors

over a forty and fifty year period, respectively. The authors compare mortality rates of

physicians within 30-year birth cohorts by smoking history. They find that physicians

who are current smokers of cigarettes (and who habitually smoked cigarettes) died on

average ten years earlier than those who never smoked. Furthermore, quitting smoking

at ages 60, 50, 40, and 30, relative to continuing to smoke, implies an increase in

longevity of 3, 6, 9, and 10 years, respectively. The researchers condition on birth cohort

and age only. There is no attempt to account for endogenous selection into different

lifetime patterns of smoking. While the authors acknowledge that their findings may

reflect a positive correlation between smoking and alcohol consumption (and hence the

smoking effect may be biased upward), they claim that confounding factors reflected

in other causes of death “are unlikely to have influenced greatly the absolute difference

between the overall mortality rates of cigarette smokers and lifelong non-smokers” (Doll
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et al., 2004).

Many of the United States Surgeon General’s conclusions about the impact of smok-

ing on health (United States Surgeon General, 2004) are based on the Peto et al. (2000)

study that matches individuals diagnosed with lung cancer (cases) with observationally-

similar individuals who did not have cancer (controls). The relative risk of cancer from

smoking, compared to not smoking, is based on the ratio of smokers among the cases

and controls. Their case-control approach only accounts for a small set of observed

individual-level characteristics, such as gender and age. The limited observed varia-

tion and absent unobserved variation prevents a full understanding of the smoking-

morbidity-mortality relationship. Furthermore, the findings rely on information col-

lected at a single point in time (which means smoking histories are reported retrospec-

tively and potentially with recall error) and consider only single outcomes (such as a

disease or the mortality rate) independently.

2.2 Importance of Observed Individual Heterogeneity

Another approach to minimize bias has been a more thorough inclusion of observed

individual-level heterogeneity. For example, some analyses have included objective mea-

sures of health (such as BMI or cholesterol) or behaviors correlated with health (such as

exercise or drinking). Others have excluded individuals with pre-existing health condi-

tions (National Cancer Institute, 1997) in order to avoid attributing other-cause deaths

to smoking. Treating this additional heterogeneity as uncorrelated with the unexplained

health outcome error introduces an endogeneity bias if there are common unobservables

that influence both morbidity/mortality and the included variables. Also, it is likely

that these additional variables are correlated with smoking behavior or, more impor-

tantly, that individual-level UH is correlated across the lifetime smoking categories, the

included observed heterogeneity (if not exogenous), and morbidity/mortality.

More recently, economists have begun exploring the health consequences of smok-

ing. One of the early economic analyses used smoking status of individuals (described

by non-smoker, current smoker, or former smoker and years since quitting) to quantify

the mortality benefit of quitting relative to continuing smoking over the subsequent

14-year period (Taylor et al., 2002). However, smoking behavior was treated as exoge-

nous and was ascertained at enrollment only (so quits are based on retrospective and

potentially noisy responses and continuing behavior is assumed of current smokers).

Additionally, the empirical specification does not account for differences in smoking

duration among smokers. The primary control for heterogeneity was exclusion of in-

dividuals who were sick in the initial period. While this sample selection mitigates
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bias due to poor-health-induced quits, it likely overstates the benefit of cessation since

continuing smokers typically engage in less healthy behaviors than do former smokers

(United States Surgeon General, 1990).

2.3 Importance of Individual Unobserved Heterogeneity

In order to address the important role of individual UH that influences both smoking

behaviors and health outcomes, economists have used different econometric techniques

to identify a causal impact. Evans and Ringel (1999) consider the impact of cigarette

taxes on the smoking behavior of pregnant women, and the subsequent effect of smok-

ing (and quitting smoking) on birth outcomes. Although the authors are not modeling

own health outcomes, their work stresses the importance of accounting for smoking

endogeneity as quitting is likely impacted by observables such as taxes as well as un-

observables that may be correlated with infant outcomes. Clark and Etil (2002) use

data from the first seven waves of the British Household Panel Survey (BHPS) to deter-

mine how responsive adult smoking behavior is to health changes. Because they have

multiple observations on the same individuals they estimate cigarette demand in first

differences using GMM estimation and in levels using twice (or more) lagged variables to

instrument lagged demand. Both approaches address endogeneity bias that results from

permanent individual unobservables (in the former case) and unobservables that are not

autocorrelated of order greater than one (in the latter case). Their work contributes

to the evidence of a dynamic relationship between smoking and health: namely that

health changes precede smoking reductions. They suggest that the sample of remaining

smokers is, therefore, not random.

Bedard and Deschenes (2006) identify the effect of smoking on premature mortality

by studying mortality rate differences between cohorts who were more likely to have

served in the United States military and, thus, to have received subsidized cigarettes.

They find that cohorts with higher veteran rates experienced excess premature mor-

tality, and a large proportion of the excess mortality was due to smoking-attributable

diseases such as lung cancer.7 Their analysis, however, does not include individual-level

heterogeneity, does not include smoking history such as duration or quits, and relies on

linear cohort controls that make it difficult to separately identify cohort, age, and year

effects. Balia and Jones (2011) emphasize the important role of UH in reducing bias in

the measured effect of smoking on mortality. Their latent factor model uses smoking

7More recently, Carter et al. (2015) suggest that much of the excess mortality among current
smokers may be due to associations with diseases that have not been formally established as caused
by cigarette smoking.
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behavior of parents and other household members to exogenously shift an individual’s

smoking initiation and cessation while having no direct impact on his own mortality.

2.4 Importance of Smoking and Health Dynamics

By solving and estimating a dynamic model of cigarette consumption and mortality

where forward-looking individuals explicitly take into account the health consequences

of their smoking behaviors, Adda and Lechene (2001) find evidence that individuals with

(observed and unobserved) characteristics that result in a higher risk of mortality (net of

tobacco-related mortality) are less likely to quit or reduce smoking. The importance of

modeling smoking and quitting decisions over the life course, especially when interested

in the impact of smoking on morbidity and mortality, is further emphasized by the

work of Khwaja (2010) who estimates a life-cycle model of endogenous health input

decisions (including health insurance, medical care utilization, alcohol consumption,

exercise, and smoking) using panel data on near elderly individuals as a way to correct

for dynamic selection associated with survivorship. In addition to the evidence that

smoking behaviors are impacted by health, which necessitates the modeling of both

observed and unobserved individual characteristics that may be correlated with quitting

and continuation, Adda and Lechene (2013) demonstrate that individuals in poorer

non-smoking-related health are more likely to initiate smoking.8

We build on this literature, which emphasizes the importance of smoking endogene-

ity. Our first addition stems from our data source. The dataset consists of a very long

panel that allows us to accurately observe each individual’s smoking dynamics, includ-

ing quits and relapses. Because the time between observations is short there is little

issue of recall error. Also, a common medical examination given at each observation

provides uniformity in the health variables. The second addition is in our modeling

of smoking behavior. We use explanatory factors that vary over time, cohort, and/or

individuals to model the smoking choices in each period. The modeling of the observed

choices each period allows us to estimate unbiased marginal effects of very detailed

smoking histories. The estimated dynamic model, in turn, allows us to simulate the

morbidity and mortality outcomes resulting from a variety of policy- and behavior-

relevant smoking decisions. For example, we quantify how the life expectancy benefit

of quitting smoking varies by smoking history (i.e., the return for a long time smoker

vs. a smoker with a history of relapse).

8Their findings, both on the relationship between health and smoking initiation and between smok-
ing and mortality, are based on cross-sectional and some very short panel data, an attempt to capture
UH with a time-invariant index of health conditions that are not directly caused by smoking according
to the epidemiology literature, and no information on quitting or relapse.

9



2.5 Theoretical Considerations of Smoking and Health

The theoretical approach to smoking framed by economists is one that emphasizes

several important aspects of the smoking/health relationship. Models of the demand for

health, initially proposed by Grossman (1972) and extended by several others including

most recently Kohn (2008) and Galama (2011), emphasize the role of individual health

production and the resulting demand for health inputs. Health is valuable because

it determines available time for activities that provide either monetary compensation

and/or non-pecuniary reward. The rational addiction model and its variants (Becker

and Murphy, 1988; Gruber and Koszegi, 2001; Bernheim and Rangel, 2004) suggest

reasons why forward-looking individuals continue to smoke despite its impact on health.

Namely, one’s history of smoking behavior affects the enjoyment one receives from

smoking today as well as withdrawal costs. Thus, individual characteristics such as time

preference, risk aversion, and health expectations are important for explaining observed

behaviors. Economists also explore the role of information in helping individuals form

expectations of uncertainties such as future health and the impact of smoking on own

health. While there is evidence that expectations about future longevity are relatively

accurate (Viscusi, 1990; Smith et al., 2001; Viscusi and Hakes, 2008), economists have

also discovered that individuals respond, with changes in their own smoking behavior,

to information that is more personal (e.g., own health decline and shocks, own health

markers, and parental health shocks) than general (e.g., Surgeon General’s reports,

spousal health shocks).9

2.6 Overview of Our Approach

In light of these theoretical contributions and empirical explorations, our approach is to

estimate, using a panel of individuals followed for much of their adult lives, a dynamic

model that approximates the forward-looking decisionmaking that results in observed

life-cycle smoking behaviors and health outcomes. Importantly, our empirical model

explains smoking behaviors over time as a function of one’s health and smoking his-

tories. In turn, that history of smoking behavior impacts morbidity and mortality.

In addition to rich observed variation in individual health characteristics, we model

both permanent and time-varying UH using a non-linear latent factor approach, or

correlated random effects in a FIML framework. Causal impacts of smoking history

9See Smith et al. (2001); Sloan et al. (2002); Darden (forthcoming); Darden and Gilleskie (2016). An
important difference between our work, which focuses on accurately estimating the impact of smoking
on mortality, and these recent papers is that 1) our data follow individuals frequently (every two years)
throughout much of their adult lifetime (up to 46 years vs. 28 years (7 waves) or less) and 2) nearly
all individuals are observed until death (88 percent vs. up to 30 percent).
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on health outcomes are identified by time-varying exogenous covariates, theoretically-

relevant exclusion restrictions, the dynamic relationships in the set of estimated equa-

tions, covariance restrictions on the correlated UH, and non-linear estimators. Using

FHS data to construct our research sample, we follow 1,464 men for up to 46 years with

censoring determined by either death or the end of the available sample period.10 The

data include a variety of health marker measures such as cholesterol and blood pressure,

cardiovascular health measures, cancer diagnoses, and smoking information obtained at

each health exam approximately two years apart. Eighty-eight percent of our sample

die during the observed time frame. After showing that our preferred random effects

specification fits the observed smoking and health data well, we simulate the model

under different lifetime smoking scenarios to assess the effects of smoking, and smoking

cessation, on morbidity and mortality outcomes.

3 Description of the Research Sample

3.1 The Framingham Heart Study

The original cohort of the FHS is well-suited for our analysis because it follows a group

of men and women aged 30 to 62 in 1948 who receive a medical examination every two

years (on average) to the present. Longitudinal datasets of this length are rare in health

and economics. The U.S. Public Health Service began collecting this information in an

effort to identify biological and environmental factors contributing to the rapidly rising

rates of cardiovascular death and disability.

The FHS original cohort sample consists of two-thirds of the adult population of

Framingham, Massachusetts in 1948. The main drawback of these data, for our pur-

poses, is that the sample is drawn from a single, small town with very little racial and

ethnic variation. As a result, geographic and demographic characteristics are limited.

Additionally, because the focus of data collection is on health, there is no information

on socioeconomic characteristics such as income and only limited information on em-

ployment or occupation. Finally, it is challenging to measure the sensitivity of smoking

to prices, taxes, or regulations, which in our sample vary over time but not across

individuals within a year.11

10We have permission to use the requested set of variables through 1996 only. We were able to
obtain death dates of sample participants through 2009.

11As we explain later, we gathered detailed data on cigarette prices and advertising expenditures from
the late 19th century throughout the 20th century in order to explain differences in contemporaneous
smoking behaviors as well as initially-observed smoking histories. We use the variation in age each
year to examine possible age-related responses to cigarette price variation over time. Additionally, we
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The breadth of health data, however, is overwhelming. Theoretically, measures of

height and weight, blood pressure, cholesterol, arthritis, CVD events, cancer, diabetes,

death, and cause of death are available each medical exam (every two years). Realisti-

cally, values of these health variables are missing sporadically. We impute values based

on previous knowledge or interpolation where it makes sense to do so. Other health

behaviors are available at points in time, but may not be ascertained at each exam. We

do not use these because we cannot adequately construct values over the life cycle.

Questions regarding smoking behaviors are often asked in great detail. For example,

for particular exams individuals were asked to report whether they smoked or not, what

types of products they smoked, the number of cigarettes smoked per day, whether they

used filtered cigarettes or not, whether they inhaled or not, and whether they smoked

all or part of the cigarette. However, the questions were not asked every exam and did

not always offer the same alternative responses when repeated. For example, for 12

percent of the individuals whom we know to have ever smoked, we know nothing about

their smoking intensity (i.e., the number of cigarettes smoked per day). For 42 percent

of the person-year observations in which a person smoked, we do not observe intensity.

These omissions make it impossible to construct measures of smoking intensity beyond

the extensive margin. The sporadic intensity data that we do observe suggests that our

sample contains relatively heavy smokers with about 85 percent of smokers reporting

smoking a pack or more of cigarettes a day. Even if we made assumptions (from the

available data) about the likely level of intensity of someone ever observed to smoke,

the associated increases in the dimension of the smoking history vector (i.e., variables

representing years of experience and tenure with light smoking and heavy smoking)

greatly complicates estimation of the effects of this history on contemporaneous smoking

behavior and morbidity and mortality outcomes.

3.2 Structure of Research Sample

To estimate our dynamic model of lifetime smoking behaviors and health outcomes we

would like to have data at each exam (approximately every two years) for each partic-

ipant. In cases where there are gaps in the smoking history, we impute observations

when the gaps are minor and drop individuals from the sample when they are larger.

(Appendix A contains full details of our procedure.) We begin with a sample of 1754

men with sufficient data on smoking behavior over the course of data collection. If

an individual died before the second exam period or we were unable to construct the

necessary health history information or initial smoking behavior, we can not include

use the price and expenditure variation at the different reported ages of smoking initiation.
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them in our research sample. Our final research sample for this analysis consists of up

to 22 biennial observations on 1464 (i.e., 1754 - 290) men beginning in 1952, provid-

ing 21,198 person-year observations.12 Table 1 characterizes our research sample over

time. Because individuals enter the study between the ages of 30 and 62, many already

have a “positive” history of smoking participation and some have a health history that

indicates onset of chronic conditions. We use responses from contemporaneous and

retrospective questions administered at the first few exams to construct these initial

condition variables. For this reason the initial conditions are represented in our re-

search sample as exam 2 variables and we begin modeling dynamic smoking transitions

and health outcomes beginning in exam 3 (around the year 1952).13

Because we have data on the same individuals through 1996 (when ages of those

still alive range from 74 to 101), we are able to observe the age and cause of death for

87.8 percent of our sample of men (1285 out of 1464). Cause of death is categorized

into cardiovascular related, cancer related, and other. Cardiovascular disease (CVD)

includes myocardial infarction, angina pectoris, coronary heart disease, stroke, and

heart failure. We know the type of cancer (within classes) that an individual acquired,

but we aggregate all cancers in our analysis due to sample size limitations.14 Note

that CVD and cancer account for over two-thirds of all observed deaths in our sample,

which is comparable to U.S. death rates for this age group during this time frame. Also,

deaths related to CVD appear to occur at a higher rate at younger ages, perhaps linked

to the national trend where death from cardiovascular disease has fallen substantially

over the last 50 years.15

Table 1 confirms that the percentage of current cigarette smokers declines over

the sample period.16 This decline reflects quits as well as selective mortality, and we

emphasize both in our empirical approach. It is important to measure well the different

smoking histories of individuals that accumulate as they age. Rather than rely on

retrospective data, the FHS allows us to observe smoking behavior at frequent intervals

12Because of likely differences by gender in determinants of smoking and impacts of smoking on
health, we examine male behavior and outcomes in this study.

13Note that calendar years may overlap across exam numbers. For example, at exam 2, which was
administered to a participant sometime between the years 1950 and 1955, ages of individuals range
from 32 to 65.

14United States Surgeon General (2004) reports that smoking raises the risk of many types of cancer,
not only lung cancer.

15This positive trend has been attributed to both reductions in smoking (and other risk factors,
despite increases in obesity and diabetes) and advances in medical care (Prince et al., 2014).

16In general, U.S. smoking rates among this cohort have declined over time from 55.8 and 31.8
percent, for men and women respectively, to 6.6 and 7.8 percent among those still alive 45 years later.
As discussed above, there were regulatory changes in the cigarette market as well as dissemination of
information about cigarettes during this period.
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Table 1: Characterization of Research Sample over Time

FHS Calendar Empirical Sample Average Death∗ Cause of death∗∗ Smoke
exam years model size age by end if died in t in t

number period (t) at t at t of t CVD Cancer

2 1950-55 1 1464 46.6 0.0 0.0 0.0 55.8
3 1952-56 2 1464 48.6 1.7 64.0 20.0 58.8
4 1954-58 3 1439 50.5 2.2 58.1 22.6 59.4
5 1956-60 4 1408 52.3 2.6 62.2 13.5 53.6
6 1958-63 5 1371 54.2 2.7 67.6 24.3 52.4
7 1960-64 6 1334 55.9 3.2 47.6 31.0 52.6
8 1962-66 7 1292 57.7 3.3 65.1 16.3 47.3
9 1964-68 8 1249 59.6 4.4 47.3 27.3 42.1
10 1966-70 9 1194 61.3 4.4 39.6 43.4 37.4
11 1968-71 10 1141 63.1 5.6 46.9 28.1 30.2
12 1971-74 11 1077 64.7 7.1 47.4 18.4 29.2
13 1972-76 12 1001 66.2 7.5 54.7 29.3 27.8
14 1975-78 13 926 67.8 7.1 37.9 34.9 24.4
15 1977-79 14 860 69.3 9.8 40.5 27.4 21.7
16 1979-82 15 776 70.8 10.3 38.6 33.8 19.3
17 1981-84 16 696 72.4 14.8 35.9 23.3 16.0
18 1983-85 17 593 73.7 13.2 32.1 21.8 15.0
19 1985-88 18 515 75.3 16.5 35.3 25.9 13.2
20 1986-90 19 430 76.6 13.0 37.5 33.9 10.5
21 1988-92 20 374 78.2 13.1 38.8 26.5 9.4
22 1990-94 21 325 79.7 17.2 30.4 21.4 7.1
23 1992-96 22 269 81.3 33.5 20.0 22.2 6.7

Total person-observations 21,198 60.6 6.5 42.1 26.3 38.6

Note: ∗ conditional on survival up to t (i.e., the death hazard).
∗∗ omitted category is Other.
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over much of adult life. Hence, the specific age one quits smoking, as well as ages of

relapse, are observed. In our sample of men, 24 percent never smoke. Smoking initiation

typically begins at young ages. In fact, only four percent of our sample had both never

smoked before we initially observe them and smoked at some point in our data. (Among

those with no observed smoking history in 1952 (28 percent of the research sample),

only 13 percent initiate smoking before death or 1996, whichever comes first.) Twenty-

seven percent of the sample smoke continuously (i.e., every period they are observed

once they begin smoking). Among those men we observe ever smoking, 49 percent quit

smoking at least once with a 10.1 percent person-period quit rate. Of the men that

quit, 74 percent of them do not restart.17 Among those who relapse within our period

of observation, the mean time of smoking cessation between spells of smoking is 3.3

years. The mean age of relapse is 53.9 years. These figures emphasize the non-random

patterns of smoking histories and the importance of a long panel consisting of frequent

interviews and limited dependence on recall.18

Table 2 details the distribution of age of death and cause of death among those

who die during our sample period. By exam 23, 87.8 percent of the individuals have

died; the average age of those still alive by the end of this exam period is 81.3. The

overall mean age of death (conditional on being observed to die) was 72.6 years of age.19

We distinguish deaths by lifetime smoking pattern (i.e., never smoked, smoker in exam

before death, and quit smoking before age 50) and by cause (i.e., cardiovascular disease,

cancer, and other). Men who die of cardiovascular disease and cancer die, on average,

at ages 70.8 and 71.9 respectively, while those who die of other causes live to age 75.5

on average (not shown in table). For men who never smoke, the average age of death

is 75.6 years; and for men who report smoking immediately prior to death, the mean

age of death is 66.2 years of age. The difference of 9.3 years is similar to the result

17This figure includes quits that may have occurred prior to the beginning of the study. The relapse
rate is likely understated because the length of time between reported smoking measures is two years.
Among all person-periods where an individual did not smoke last period but had ever smoked, the
rate of relapse is 37.5 percent.

18Individuals in our sample range from ages 30 to 62 when we first observe them. In estimation we
account for potential cohort differences by including an indicator of whether or not an individual is 50
years of age or older when first observed (31 percent of the sample). Those in the older cohort have
survived to age 50 and may be healthier in unobserved ways. In fact, they die on average almost five
years older than the younger cohort (age 76.4 vs. 71.6). Individuals from the observed older cohort
are slightly more likely to smoke in any year after age 50 (57.5 vs. 54.5 percent). In addition to our
inclusion of the cohort indicator, our joint estimation of initially-observed smoking and health histories
that depend on UH addresses potential selection concerns.

19Life expectancy of men born in Massachusetts between 1885 and 1918 (i.e., birth years of men in
the original FHS cohort) conditional on reaching age forty was 67 to 69 years (Bureau of the Census,
1949).
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reported in Doll et al. (2004). Ever smoking is also associated with a higher proportion

of cancer-related deaths. Interestingly, the raw data suggest that smoking cessation

by age 50 results in a comparable lifespan to those who never smoked, yet they still

experience cancer-related deaths in a higher proportion. The Surgeon General Reports

use similar life year gains to advocate for smoking cessation programs. We demonstrate

with our lifetime model of smoking and health that these figures are biased upward.

Table 2: Distribution of Age and Cause of Death by Lifetime Smoking Pattern

Age of death distribution (percentile) Cause of death
Smoking pattern Mean 10th 25th 50th 75th 90th CVD Cancer Other

Unconditional 72.6 58 66 74 80 85 42.1 26.3 31.6
on smoking

Never smoked 75.6 64 70 76 82 87 44.4 19.9 35.8

Smoked in exam 66.2 52 59 67 74 79 44.3 28.8 26.9
prior to death

Quit smoking 74.1 63 70 75 80 84 39.4 29.2 31.4
before age 50

Note: Statistics conditional on death by exam 23 (87.8 percent of sample).

4 Empirical Framework

Our goal in this section is to describe an empirically-implementable model that captures

the dynamic considerations of forward-looking individuals making optimal smoking

decisions in light of uncertain health evolution. The key features of the theory from

which we derive our empirical model are: (i) individuals care about discounted lifetime

utility; (ii) individuals derive utility from smoking (and other consumption), (iii) the

marginal utility of smoking may depend on past levels of smoking, (iv) utility also

depends on current health, and (iv) smoking histories, health histories, and current

smoking behavior impact the distribution of future health outcomes.
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4.1 Theoretical Foundation and Derived Empirical Model

To be more specific and to define notation, we write down the individual’s optimization

problem using a Bellman formulation.20 From this problem we derive an estimable

equation for smoking demand. The lifetime value of each smoking alternative depends

on information known by the individual when entering each decision-making period.

The information set, denoted Ωt, includes the vector HS
t representing an individual’s

history of smoking decisions up to period t; the vector HD
t representing his history of

diseases up to period t; the vector Xt of exogenous demographic variables in t; and

the vector Pt of exogenous period t prices and supply-side characteristics related to the

consumption/health input goods. The individual also has private information about his

preferences for smoking and his expectations about disease and mortality transitions,

denoted by the vector ut = [uSt , u
D
t , u

M
t ]. Conditional on being alive to make a smoking

decision, the lifetime value of smoking alternative st = s is

Vs(Ωt, ut) =
D∑

d=0

p(dt = d|HD
t , H

S
t , Xt)[U(ct, st = s;HS

t , dt = d) + ust (1)

+β(1− p(mt+1 = 1|HD
t+1, H

S
t+1, Xt)V (Ωt+1)] ∀t, s = 0, 1

where utility is constrained by the per-period budget, ct = yt−Ptst; the price of general

consumption ct is normalized to one; yt measures income in period t; and Pt includes

the price of cigarettes.21 We capture uncertain health transitions by p(dt = d|·) where

dt represents a vector of disease states taking on the value d. Current utility depends

on the disease state. Contemporaneous utility also depends on one’s smoking history,

HS
t , to capture tolerance, reinforcement, and withdrawal effects (i.e., addiction) that

vary with an individual’s past smoking behaviors. To characterize future utility (line 2

of equation 1), we define β as a measure of how forward-looking an individual may

be (i.e., the discount factor); we allow for an absorbing mortality state stochastically

with p(mt+1 = 1|·) where the value of death is normalized to zero; and we describe

the maximal expected value of future utility (unconditional on the future smoking

alternative) by V (Ωt+1) = Et[maxs Vs(Ωt+1, u
s
t+1)]. The dynamic optimization problem

allows smoking and disease histories to impact expected current utility and allows those

histories and current behavior and health to affect expectations about future utility.

Optimal smoking decisionmaking requires backward solution from a final period

20Individual subscripts n are dropped to simplify notation.
21For simplicity, we take income as given and do not model employment, marital, or savings decisions

nor the effect of health on these behaviors. This decision is predicated by the fact that the FHS data
do not contain this information.
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characterized by certain death. Analytic solution also requires functional form assump-

tions for several components of the problem including the utility function, the disease

production function, the mortality function, and the utility error term distribution.

Theoretically, the optimization problem can be solved to obtain a decision rule for

smoking of the form

p(st = s) = f(s∗t ) where s∗t = s(HS
t , H

D
t , Xt, Pt, u

S
t ), s = 0, 1 ∀t. (2)

Notice that the demand (for smoking) equation is a function of all information available

to the individual at the beginning of the decision-making period. Specifically, the vector

HS
t (capturing smoking history up to period t) includes previous period smoking status,

st−1; the length of smoking cessation up to t, Ct,; the length of smoking duration up

to t, Dt; and the length of smoking experience up to t, Et.
22 The smoking history

is updated at the end of period t (i.e., HS
t+1) to reflect smoking choices made at t.

Importantly, the specification also includes exogenous supply-side characteristics of the

cigarette market, Pt (e.g., prices, advertising), that vary over time.23

An individual faces uncertain health outcomes each period. We model the health

production function as

p(dt = d) = f(d∗t ) where d∗ = d(HD
t , H

S
t , Xt, u

D
t ), d = 0, . . . , D ∀t (3)

where the “disease” variable may take on several discrete values. In practice, we esti-

mate the number of cardiovascular disease (CVD) events in period t; the probability

of cancer diagnosis (by the end of period t conditional on no cancer diagnosis up to

t); the probability of diabetes diagnosis (conditional on no diabetes diagnosis up to t);

and body mass in period t.24 The vector HD
t (capturing disease history up to period

t) includes variables constructed from the health outcomes that are modeled (i.e., any

CVD events entering period t, the number of CVD events entering period t, cancer di-

agnosis ever, diabetes diagnosis ever, and BMI in period t− 1) as well as variables that

22We summarize the history of smoking behavior using (polynomials of) these four variables rather
than including indicators of smoking behavior at each age, which would be computationally intractable.
Are we missing important aspects of past behavior? We do not capture variation in smoking intensity,
for the reasons described in section 3.2, and we remind the reader that most smokers during this
time smoked a pack or more a day. We also do not explicitly account for the number of attempts to
quit smoking, which could reveal information about an individual’s unobserved type. However, the
variables and specification we include is rich. Additional non-linearities did not alter the results.

23We return to discussion of these theoretically-important variables when we discuss initial conditions
and identification below.

24Body mass is modeled as a continuous distribution of the body mass index (BMI), which is a
normalized function of height and weight.
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we treat as exogenous that also describe one’s health (i.e., per-period systolic blood

pressure, diastolic blood pressure, cholesterol levels, and an indicator of arthritis).25

Mortality, or the probability of death at the end of period t (i.e., an individual dies

before making it to the next exam) is

p(mt+1 = m) = f(m∗t+1) where m∗ = m(HD
t+1, H

S
t+1, Xt, u

M
t ), m = 0, 1 ∀t. (4)

Because death is an absorbing state, decision rules and health production are condi-

tioned on being alive in period t. Non-random mortality, therefore, creates important

selection into the sample of (remaining) individuals whose characteristics explain the

modeled smoking behaviors and health outcomes. Note that the probability of survival

to the next period (t + 1) depends on the updated (i.e., accounting for current period

observed outcomes) disease and smoking histories.

As should be evident, the period t demand for smoking is identified by variation in

period t supply-side conditions (Pt) that, according to an economic theory of individual

optimizing behavior, impact the smoking decision but do not independently impact

health production or mortality conditional on period t smoking behavior. In other

words, equations 2, 3, and 4 form a set of structural (demand and production) equations

that can be empirically identified and estimated. These dynamic equations explain

smoking choices, st, and health outcomes, dt and mt+1, from periods t = 2 to t = 22,

where t denotes the two-year period between exams in our data.

4.2 Initial Conditions

Because we first observe individuals between the ages of 32 and 65 (in period t = 2),

we must account for the endogeneity of initially-observed smoking history [denoted by

E2 (smoking experience entering t = 2 where E2 = 0 implies never smoked and E2 > 0

implies ever smoked), s1 (smoking status in t = 1 conditional on ever smoking prior to

t = 2), and D2 (years of smoking duration entering t = 2 conditional on smoking in

t = 1)] as well as disease history [denoted by CVD2 (any CVD events entering t = 2)

and BMI1 (body mass index in t = 1)].26 For simplicity we denote the three initial

25The medical literature tells us quite plainly that blood pressure and cholesterol are impacted by
smoking. Arthritis, however, appears to have little association with smoking (to our knowledge),
but does impact health transitions. For the sake of parsimony, we have chosen to present results
from a model where these outcomes are not jointly modeled with the set of equations defined below.
Conclusions about the effects of smoking on morbidity and mortality were not appreciably different
using a larger model that treated these health variables as endogenous.

26We do not include equations for initially-observed cancer or diabetes because very few individuals
in our sample enter the FHS with these diseases. We also exclude an equation for initially-observed
years of smoking cessation conditional on having quit prior to the first health exam because the small
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smoking variables entering period t = 2 by the vector IS2 and the two initial disease

variables entering period t = 2 by the vector ID2 . We specify the initial conditions by

the following non-dynamic equations27

IS2 ≡ [E2, S1, D2] = s′(X1, P1, Z1, u
IS

1 ) (5)

ID2 ≡ [CVD2,BMI1] = d′(X1, P1, Z1, u
ID

1 )

The initial condition equations are included in the set of jointly-estimated structural

equations. Note that these initial condition equations are static and expressed in their

reduced form; they do not contain any lagged endogenous variables. In addition to the

exogenous cigarette market characteristics, we also include exogenous shifters, denoted

Z1, to aid in identification (discussed below).

4.3 Individual-level Unobserved Heterogeneity

Unobserved individual characteristics (i.e., latent heterogeneity) also impact smoking

demand, morbidity, and mortality (represented by equations 2-5). It is important to

model this correlated UH for several reasons. First, it is reasonable to believe that

unobserved individual differences impact smoking behavior and health. In fact, the

ability of observed variables to explain health outcomes is notoriously low. These dif-

ferences include permanent unobserved characteristics such as health-related genetic

endowments or cohort effects and non-health related personality or preference char-

acteristics. They also include differences such as unobserved health events or stress

events that vary over time. Second, the outcomes we model are functions of endoge-

nous explanatory variables and, as such, the error term in the equation of interest is

correlated with the explanatory variable, creating endogeneity bias in the estimated

coefficients. Third, measurement error cannot be ruled out, so allowing for a source of

this error reduces measurement error bias in marginal effects of interest. Accounting

for these unobserved differences is necessary for obtaining unbiased causal impacts of

the variables of interest.

To model these potential sources of correlated UH, the composite error term in each

equation j, ujt , is decomposed into three parts: a permanent individual heterogeneity

component (µ), a time-varying, serially-uncorrelated individual heterogeneity compo-

nent (νt), and an idiosyncratic component (εt). More specifically, ujt = µj +νjt +εjt . The

latent heterogeneity captured by µ allows for correlation across smoking behavior and

number of quitters does not provide enough variation for estimation.
27The prime superscript on the functions is meant to distinguish them from the previously defined

dynamic smoking and disease functions.
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health outcomes within a period and across time. The heterogeneity captured by νt
allows for correlation in behaviors and outcomes within a period. We assume that εt is

a vector of independent and identically-distributed errors (Extreme Value or Normally

distributed depending on the functional form of the contributions to the likelihood

function).

Although we do not allow persistence in the time-varying shocks (νt), we note an

important feature of our dynamic model specification: the inclusion of rich histories of

endogenous smoking behavior and health outcomes. As an example, consider a health

shock that occurs in period t. As modeled, the random, serially-uncorrelated shocks

define period t health events (i.e., the number of cardiovascular disease events, cancer

diagnosis, diabetes diagnosis, and body mass index variation) conditional on observed

variables, and have no independent effects on subsequent smoking behavior and health

outcomes conditional on the histories of these health events. That is, the observed

health events in period t absorb all impacts of the health shock on future health.

As a counter example, one could imagine a hip fracture in t that may or may not

alter an individual’s observed health events in t but that leads to a sedentary lifestyle

that explains future health events. Our model would not capture this type of serially-

correlated period t health shock. However, given that CVD (which includes stroke in

our model), cancer, and diabetes explain over two-thirds of deaths in the U.S. (in 2010),

we have endogenously modeled the main contributors. Non-infectious airway diseases

(or chronic lower respiratory diseases) surpassed stroke as the number three killer in

2008 and currently account for 7% of deaths; we do not model these health events due

to lack of consistent information in the FHS data. Similarly, period t smoking shocks

(e.g., a stressful year at work or home) do not have independent effects on subsequent

smoking behavior or health outcomes, conditional on the rich history of endogenous

smoking behavior. We believe that allowing for such dependence is a second order (and

computationally challenging) concern.

The permanent heterogeneity, which is correlated across outcomes and over time,

is captured by the joint distribution of µ = [µIS , µID , µS, µD, µM ]. The time-varying

heterogeneity is defined by the joint distribution of νt = [νSt , ν
D
t , ν

M
t ].28 We could as-

sume that these multivariate distributions are normal, for example, and estimate the

cross-equation correlation coefficients along with the coefficients on the observable co-

variates. However, we do not wish to impose a specific distribution. Rather, we model

the UH as random effects and approximate their unknown distributions discretely, esti-

28Time-varying heterogeneity does not enter the equations for the variables describing one’s initial
smoking and health histories entering period two because those variables summarize behavior and
outcomes from all periods prior to inclusion in the study.

21



mating both the discrete mass points along the support of the unobserved components

as well as the associated probability weights (termed a Discrete Factor Random Effects

(DFRE) method or latent factor method). This flexible estimation technique (Heck-

man and Singer, 1984; Mroz and Guilkey, 1992; Cunha and Heckman, 2008) does not

impose a specific distribution on the error terms as is standard with many maximum

likelihood techniques.29 Additionally, the discrete distributions of the random effects

add only a fraction of the additional parameters (and associated loss in degrees of free-

dom) required by the fixed-effects method (which would be inconsistent in nonlinear

models).30

The latent factor approach allows individual characteristics that are unobserved

by the researcher to impact all jointly estimated equations (in a non linear way) and

integrates over their distributions when constructing the likelihood function. Twelve

probabilities or densities, presented generally in equations 2-5, form the likelihood func-

tion. The contribution of individual n to the likelihood function, unconditional on the

29Using Monte Carlo simulation, Mroz (1999) shows that when the true distribution of the error
terms is jointly normal the DFRE method performs as well as maximum likelihood estimation assuming
normality. When the simulated distribution is not normal, the DFRE method performs better in terms
of precision and bias. Mroz (1999) and Guilkey and Lance (2014) describe the econometric properties
of the DFRE estimator using Monte Carlo studies.

30While the method we use is called a “random effects estimator,” it is important to recognize that
the estimated “random effect” is not assumed to be independent of endogenous explanatory variables,
provided that we model the dependence of such endogenous explanatory variables and the outcome of
interest on the random factor. Any explanatory variable that we do not explicitly model as a function
of the random factor is assumed to be independent of the random factor.
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correlated UH (µ and νt), is

Ln(Θ, µ, νt, ρ, ψ) =
K∑
k=1

ρk

{
p(E2 = 0|µIS1

k )1[En2=0]

×
[
[1− p(E2 = 0|µIS1

k )]p(s1 = 1|µIS2

k )sn1 [1− p(s1 = 1|µIS2

k )](1−sn1)φS3(Dn2|µIS3

k )
]1[En2>0]

× p(CVD2 = 0|µID1

k )(1−CVDn2)[1− p(CVD2 = 0|µID1

k )]CVDn2φD2(BMIn1|µID2

k )

×
T∏
t=2

L∑
`=1

ψ`

[
p(st = 1|µS

k , ν
S
t`)

snt
[
1− p(st = 1|µS

k , ν
S
t`)
](1−snt)

×
2∏

d1=0

p(d1t = d1|µD1

k , νD
1

t` )1[d
1
nt=d1]

× p(d2t = 1|µD2

k , νD
2

t` )d
2
nt
[
1− p(d2t = 1|µD2

k , νD
2

t` )
](1−d2nt)

× p(d3t = 1|µD3

k , νD
3

t` )d
3
nt
[
1− p(d3t = 1|µD3

k , νD
3

t` )
](1−d3nt) × φ(d4nt|µD4

k , νD
4

t` )

×
[
1− p(mt+1 = 1|µM

k , ν
M
t` )
](1−mnt+1)

×
[
p(mt+1 = 1|µM

k , ν
M
t` )×

2∏
c=0

p(mC
t+1 = c|µMC

k , νM
C

t` )m
C
nt+1

]mnt+1

]}

where Θ defines the vector of parameters of the model and p(·) represents the logit or

multinomial logit probabilities (or densities) of the observed behaviors and outcomes.

The vectors ρ and ψ denote mass-point specific estimates of the joint probabilities of

the permanent and time-varying heterogeneity, respectively. ρk is the estimated joint

probability of the kth permanent mass point, which is given by

ρk = P(µIS = µIS

k , µ
ID = µID

k , µS = µS
k , µ

D1

= µD1

k , . . . , µD4

= µD4

k , µM = µM
k , µ

MC

= µMC

k ).

ψ` is the estimated joint probability of the `th time-varying mass point and is given by

ψ` = P(νSt = νSt`, ν
D1

t` = νD
1

t` , . . . , ν
D4

t = νD
4

t` , ν
M
t = νMt` , ν

MC

t = νM
C

t` ).

4.4 Variables used in the Empirical Specification

Table 3 summarizes the dependent variables describing the dynamic smoking behav-

ior and health outcomes that we seek to explain. The morbidity measures of disease

that we model over time include the number of cardiovascular disease events, cancer

diagnosis, diabetes diagnosis, and body mass index, while the mortality measures are
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death and cause of death. Appendix Table B1 summarizes the jointly estimated set

of twelve behaviors and outcomes, and their determinants, that form the likelihood

function. The determinants are divided into pre-determined endogenous variables, ex-

ogenous variables, and unobserved heterogeneity (columns 2, 3, and 4). The table

serves two purposes: it summarizes sources of identification in relevant equations based

on theoretical restrictions and it depicts the correlation across equations and over time

coming from both observed and unobserved heterogeneity. The specification of each

equation (i.e., how these explanatory variables enter the equations) includes higher mo-

ments and interactions of some variables if relevant since the equations represent nth

order approximations of the non-linear and dynamic demand and production functions.

The equation system of smoking behavior and health outcomes captures the inher-

ent dynamics over an individual’s lifetime. Namely, observed smoking and morbidity

outcomes depend on information known at the beginning of the period. Specifically,

they depend on one’s smoking history and disease history up to the current period. Ta-

ble 4 provides summary statistics for explanatory variables entering period t (i.e., those

that enter the smoking and disease equations). Mortality occurs during the period (or

prior to period t+ 1) and depends on the updated histories of these variables. That is,

the probability of death before period t+ 1 (conditional on not dying prior to period t)

depends on one’s smoking and disease histories up to period t as well as behavior and

disease outcomes in period t. All equation specifications also include polynomials and

interaction terms and a flexible time trend as explanatory variables.

4.5 Identification

Having defined all of the equations in our jointly-estimated system, we can now thor-

oughly discuss identification. We have four sources of identification for estimation of

causal marginal impacts: theoretically-justified variables in our behavioral equations

that are excluded in outcome equations, variation in the histories of all exogenous

explanatory variables captured by our dynamic equation specification, additional ex-

ogenous variables that explain the jointly-estimated initial condition equations, and

functional forms of the non-linear estimators as well as covariance restrictions on the

error structure across equations and over time.

Our main behavioral equation explains smoking in the current period and our main

health equations capture morbidity in the period and mortality at the end of the pe-

riod. Importantly, the smoking equation includes theoretically-justified, supply-side,

exogenous variables that influence cigarette demand, namely the mean real price of

cigarettes at time t (for 5 cartons or 1000 cigarettes in year 2000 dollars) and real per
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Table 3: Dependent Variables in the Jointly-Estimated Set of Equations

Variable Mean SD

Smoking behavior
Smoke at t 0.386 0.487

Morbidity outcomes
CVD events at t

0 CVD events (omitted category) 0.946 0.225
1 CVD event 0.042 0.201
2+ CVD events 0.012 0.107

* Ever had CVD event up to t (person-exams) 0.198 0.399
* Ever had CVD event (persons) 0.484 0.500
* Number of CVD events up to t; [0, 14] 0.339 0.843

Cancer diagnosis at t | no cancer up to t 0.013 0.112
* Ever diagnosed with cancer up to t (person-exams) 0.048 0.214
* Ever diagnosed with cancer (persons) 0.179 0.383

Diabetes diagnosis at t | no diabetes up to t 0.011 0.102
* Ever diagnosed with diabetes up to t (person-exams) 0.061 0.240
* Ever diagnosed with diabetes (persons) 0.145 0.352

Body Mass Index at t /10; [1.4, 5.4] 2.644 0.350

Mortality outcomes
Death hazard by end of t 0.065 0.247

Cause of death in t — death in t
CVD 0.421 0.494
Cancer 0.263 0.440
Other (omitted category) 0.316 0.465

Initial conditions
Never smoked 0.272 0.445
Current smoker | ever smoked 0.863 0.344
Years of smoking/10 | current smoker; [0.2, 5.5] 2.512 0.938
Any CVD 0.034 0.182
Body Mass Index/10; [1.7, 4.0] 2.588 0.338

Note: Starred rows are additional statistics, not dependent variables.
Ranges of continuous variables are in brackets.
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Table 4: Explanatory Variables Entering Period t

Variable Abbreviation Mean SD Min Max

Time-varying variables
Endogenous

Smoker in t− 1 st−1 0.409 0.492 0 1
Years of cessation entering t Ct 5.035 9.799 0 68
Years of duration entering t Dt 13.238 18.317 0 74
Years of experience entering t Et 21.208 18.585 0 74
1 CVD event in t− 1 1[CVDt−1 = 1] 0.037 0.189 0 1
2+ CVD events in t− 1 1[CVDt−1 > 1] 0.011 0.106 0 1
Ever had CVD event up to t− 1 E CVDt−1 0.167 0.373 0 1
Number of CVD events up to t− 1 N CVDt−1 0.274 0.742 0 12
Cancer diagnosed in t− 1 CANt−1 0.010 0.098 0 1
Ever diagnosed with cancer up to t− 1 E CANt−1 0.036 0.187 0 1
Diabetes diagnosed in t− 1 DIAt−1 0.010 0.099 0 1
Ever diagnosed with diabetes up to t− 1 E DIAt−1 0.052 0.222 0 1
Body mass index in t− 1 BMIt−1 26.436 3.458 13 54

Exogenous
Systolic blood pressure in t− 1 SBPt−1 136.422 20.538 80 260
Diastolic blood pressure in t− 1 DBPt−1 81.934 11.595 38 140
Cholesterol level in t− 1 CHOt−1 222.752 39.461 81 551
Arthritis in t− 1 ARTt−1 0.268 0.443 0 1
BMI, SBP, DBP missing 0.063 0.243 0 1
CHO missing 0.131 0.338 0 1
Age (years) 60.597 12.170 32 101

Time-invariant variables (Exogenous)
Education: grade school 0.274 0.446 0 1
Education: some high school 0.161 0.367 0 1
Education: high school degree 0.282 0.450 0 1
Education: some college 0.087 0.281 0 1
Education: college degree 0.098 0.298 0 1
Education: post college 0.098 0.298 0 1
Born outside U.S. 0.170 0.376 0 1
Italian ancestry 0.233 0.423 0 1
Older cohort: Age 50+ at t = 1 0.309 0.462 0 1

Note: Table summarizes variables entering period t that explain smoking and disease in t.
Mortality at end of t depends on updated endogenous variables that include period t smoking
and disease. Equation specifications also contain interactions, polynomials, and time trends.
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capita expenditures on cigarette advertising (in year 2000 dollars) at time t, denoted

by Pt. The cigarette market characteristics do not impact period t morbidity and end

of period t mortality outcomes conditional on observed smoking histories. Because in-

dividuals live in the same community, cigarette advertising and price vary over time

but not across individuals. Thus, we interact these time-varying variables with age

and previous smoking status. We omit the levels of these variables due to collinearity

with year.31 Below we discuss the cigarette market data that aid in identification (and

represent the traditionally-used theoretically-justified restrictions in single equation or

IV reduced form analyses).

Additionally, our main equations for smoking and health are dynamic (i.e., depend

on endogenous past outcomes) and we model (estimate) the endogenous smoking behav-

ior and health outcomes for all observed periods spanning up to 46 years of a person’s

lifetime. This dynamic specification allows the entire history of previous exogenous

covariates to serve as implicit instrumental variables for the lagged endogenous vari-

ables (Arellano and Bond, 1991; Bhargava and Sargan, 1983). That is, they directly

influence past (but not current) behavior. Recall that these dynamic equations depend

on health markers (i.e., blood pressure and cholesterol levels) and arthritis, which we

treat as exogenous. The smoking equation also accounts for the exogenous history of

cigarette prices and advertising.

Because we cannot use dynamic equations to explain our initially-observed endoge-

nous variables (i.e., smoking and health histories up to the point we first observe some-

one in our sample), we specify unique static equations that are jointly estimated with

the main dynamic equations. Theory tells us that smoking demand in period t is a func-

tion of one’s smoking history, HS
t . Dynamic substitution confirms that period t smoking

demand is a function of initial smoking history, HS
2 , entering period t = 2 (the first

period we can model smoking behavior dynamically). The equations for each variable

defining smoking history entering period t = 2, IS2 , are functions of the initial cigarette

31We have run regressions where we include the levels of cigarette prices and advertising expenditure
(as well as higher moments) and can confirm that the signs of the effects are in the expected directions:
higher prices reduce smoking probabilities and higher advertising expenditures increase them. However,
we note the possible collinearity with aggregate year effects and choose to remove the level variables
and include a cubic time trend. We retain interactions of the price/advertising variables with age.
We capture different effects of cigarette prices and advertising at different ages. At the extreme,
adolescents are differently affected by price variation than adults. Likewise, adolescents are differently
affected by advertising of cigarettes than are adults. In fact, the literature shows us this (for example,
Grossman et al. (1993) and Pollay et al. (1996)). We also expect price elasticities to differ by income,
which we do not have in our data. Yet we know income is correlated with age (and education, for
that matter). Lastly, there is ample evidence that smokers and non-smokers are differently sensitive
to price. To capture these effects, we interact the supply-side variables with age and lagged smoking
status.
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market characteristics, P1, which we observe.32 Because one’s initially-observed disease

history also depends on previous smoking behavior, we include cigarette market char-

acteristics in the equations that explain initial cardiovascular disease and body mass,

ID2 , and do not include individual smoking history.

We now return to discussion of the cigarette market data. Appendix C provides

intuition on why these these supply shifters would causally influence demand. The

argument is relatively straightforward for prices, but one could be concerned that ad-

vertising simply shifts demand between brands. There is quasi-experimental evidence

that advertising has a causal impact on smoking rates. In the late 1960s and early

1970s a series of government regulations restricted and then banned cigarette ads on

television and radio.33 Appendix Figure C1 shows that real advertising spending rose

continuously in the decades before and after these regulations, but fell by forty percent

in the five-year period after the regulations were introduced. This reduction is almost

surely driven by regulations and not changes in demand or new information about the

consequences of smoking (i.e., it is several years after the 1964 Surgeon General’s Re-

port). Cigarette consumption for adults fell over five percent during the beginning of

this period, while it rose for the decades before and just after the ban. (See Table 2 in

American Lung Association (2011); Figure 2 in Harris (1979).) Appendix C also doc-

uments that both supply shifters vary substantially over time, and that these changes

are often linked to government or judicial policies.

The cigarette market data we use come from a variety of sources discussed in Ap-

pendix C. We assemble a time series of cigarette prices and industry-wide advertising

by cigarette companies from 1893 to 2009 to help identify the period-by-period smok-

ing equations (using contemporaneous changes in these variables over our observation

period) and the initial condition (using values during each persons childhood). In the

main equations, we use the data from 1950-1994 to represent time-varying market char-

32Specifically, the initial conditions are functions of the advertising expenditures. Recall that in-
dividuals in our sample are between 32 and 65 when we first observe them. Most current cigarette
smokers began when they were young. The individuals in our data set were “young” (i.e., age 10 to
14 or 15 to 18) in different calendar years. We use the advertising expenditure levels in the years
individuals were “young” to shift initial smoking behavior. These pre-1940 advertising levels have no
independent effect on smoking behavior in 1948 and beyond (to 1996) when we estimate the biennial
smoking patterns of individuals in our sample. We use different age groupings because ever smoked
may be correlated with smoking experimentation at younger ages while duration smoking conditional
on being a current (period t = 1) smoker likely reflects continued smoking into adolescence rather than
simply experimentation. We wanted to capture these two likely age scenarios. We do not use cigarette
prices in these initial condition equations because we did not have enough variation in the early years
to identify effects. See Figure C.2 in the Appendix.

33In 1968 the FCC required TV and radio stations to air anti-cigarette commercials if they also
broadcast cigarette ads. In 1971 federal law banned all cigarette ads on TV and radio.
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acteristics affecting contemporaneous smoking behavior. While these supply variables

have statistically-important effects on smoking behavior, we also find empirical sup-

port for omitting them from the health equations.34 We use the data through 2009

in simulations, based on our estimated model, until death. We use the data from

1895-1939 to account for variation in the cigarette market that may have influenced

smoking behavior early in one’s life and, in particular, smoking initiation. Recall that

individuals are different ages (i.e., 32 to 65) when we originally observe them. Hence,

they were “young” at different points in history. We argue that variation in cigarette

prices and advertising when individuals in the FHS were in their teenage years may

explain propensities to begin smoking. Indeed, we show that real per-capita cigarette

advertising expenditures averaged over the years in which an individual was between 10

and 14 (or 15 and 18 ) positively predict the initially-observed smoking history when

an individual enters the FHS. Our “advertising expenditure during the ages of 10 and

14 (or 15 and 18)” variable is not perfectly correlated with age or calendar year be-

cause ages at the first exam vary and the first exam of each individual in the FHS was

administered sometime between 1948 and 1953.35 So, for example, when the Supreme

Court dissolved the Tobacco Trust in 1911 cigarette prices fell and advertising rose.

These changes are likely to have a different effect on older men of our sample (who were

adults at the time of the breakup) relative to younger men. Support for this sort of

differential effect is presented in the literature review in Appendix C.

In addition to the time-varying cigarette market characteristics that serve as a source

of exogenous variation that impacts the initial conditions, we also include information

about sibling structure in the initial condition equations. We argue that smoking initia-

tion, which generally occurs at young ages, may be influenced by siblings or one’s order-

ing among siblings (Gilleskie and Strumpf, 2005; Kelly et al., 2011; Black et al., 2015).

These variables include the number of siblings, an indicator of being an only child, a

linear birth order variable, and an indicator of being a first-born child. The coefficients

34These variables are jointly significant in the smoking equation and not significant in the health
equations conditional on smoking history. To demonstrate that the supply-side variables have an
economically meaningful effect on individual choices, we used the estimates discussed in the next
section to simulate smoking behavior when we forced the advertising and price variables to be one
standard deviation above and below its observed value. We find, for example, that smoking propensity
is 13 percentage points lower when we increase cigarette prices by one standard deviation (results
available upon request). These figures imply an elasticity close to -1 at age 50. Note that this
elasticity represents the dynamic influence of a price increase each year. It reflects the per period
change in smoking behavior as well as the cumulative impact of past changes in smoking behavior
induced by the price increase.

35A historical cigarette price variable was similarly constructed to reflect average prices during an
individual’s teenage years. This variable did not satisfy the identification criteria and is, therefore, not
used in the initial conditions equations.
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on these variables are jointly significant in the initial condition equations, and are not

significant in the main equations once we control for smoking and health histories. We

provide summary statistics for variables that capture the cigarette market and sibling

structure in Table 5. To summarize, our model parameters are (over-)identified us-

ing theoretically-relevant exclusion restrictions where appropriate, the entire history of

exogenous time-varying variables given the dynamic equation specification, covariance

restrictions associated with estimation of the correlated UH, and non-linear estimators.

Table 5: Variables that Serve in Identification

Variable Mean SD Min Max

Cigarette market (values in year 2000 $)
Mean cigarette price for 5 cartons in year t 212.87 49.65 129.52 283.79

- using years 1996-2009*
Mean cigarette price for 5 cartons in year t 87.45 13.84 70.07 125.97

- using years 1950-1994
Advertising expenditure per capita in year t 3.07 1.35 1.29 5.10

- using years 1996-2009*
Advertising expenditure per capita in year t 6.57 1.93 2.83 10.60

- using years 1950-1994
Advertising expenditure per capita at ages 15-18 2.21 1.85 0.01 5.92

- using years 1899-1939
Advertising expenditure per capita at ages 10-14 1.82 1.80 0.07 5.92

- using years 1895-1935

Sibling structure
Number of siblings 4.45 2.89 0 20
Only child 0.04 0.20 0 1
Birth order (up to 5th) 2.75 1.49 1 5
First born child 0.27 0.45 0 1
Sibling information missing 0.18 0.38 0 1

Note: * 1996-2009 values are used when simulating behavior beyond our sample
observation period. The price and expenditure time series are depicted in Appendix C.
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5 Results

Our empirical analysis begins with FIML estimation of the 12 equation system (see

Appendix Table B1) — representing smoking behavior (1 equation), morbidity out-

comes (4 equations), mortality outcomes (2 equations), and initial conditions (5 equa-

tions) — that allows for individual-level correlation across equations and over time.

We discuss parameter estimates from two versions of the model: one that allows for

correlated individual-level UH (our preferred FIML model) and one that does not. The

model without correlated UH amounts to estimation of a single equation separately

with endogenous regressors treated as exogenous. Having estimated the parameters,

we demonstrate the ability of our preferred model to fit the observed data. We also

show that the model is able to predict out-of-sample (post-1996) ages of death for the

12 percent of individuals in the estimation sample who had not died by 1996. We

then use the model to simulate morbidity and mortality outcomes for a wide array of

smoking patterns that could be exhibited by individuals over the life course. These

results, compared to those from models typically used in this literature, demonstrate

the differences we find regarding the impact of smoking cessation on morbidity and

mortality.

5.1 Parameter Estimates

Our preferred model (labeled ‘FIML with correlated UH’) is the one that explicitly

introduces and estimates the correlated UH that might impact both smoking behavior

and morbidity/mortality in order to capture the selection inherent in smoking history

variation and the confounding associated with health outcomes variation. Table 6

presents estimates of and standard errors on coefficients of selected determinants of

smoking. It is difficult to infer marginal effects from this table, since the variables are

part of a dynamic (e.g., smoking history is defined by lagged smoking as well as years of

smoking duration, experience, and cessation) and larger system (e.g., smoking history

impacts health history which also influences current smoking behavior).36

As expected, the point estimate on lagged smoking is large and significant, suggest-

ing state dependence in smoking. Furthermore, the longer one has smoked the more

36We calculate (and discuss in the next sections) marginal effects using simulation techniques to
account for the dynamic feedback and large number of polynomials and interactions in the specification.
We focus our discussion of the effects of smoking and health histories. Other exogenous determinants
included in each equation are age, education, ancestry, origin, cohort, and year trends (and results are
available from the authors). Estimates of the correlated UH contributions and their distributions are
presented in Appendix Table B2. Parameter estimates for other equations are also in Appendix B:
cause of death (B3); morbidity outcomes (B4, B5, and B6), and initial conditions (B7).
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likely he is to continue smoking (at a diminishing rate). With regard to the endogenous

health variables, blood pressure has a significant effect (negative for SBP and positive

for DBP) and a CVD event in the previous period reduces the probability of smoking.

Body mass and cholesterol levels in the previous period do not impact the probability

of smoking.

For completeness, we also provide coefficient estimates and standard errors from a

model with no correlated UH (i.e., the equations are estimated separately and coeffi-

cients on endogenous variables reflect bias associated with selection and confounding).

This model (labeled ‘single equation without correlated UH’) extends the models often

used by practitioners and policymakers to measure the impact of smoking on health

outcomes and to calculate the benefits of smoking cessation by including a richer de-

scription of observed smoking and disease histories. Yet, it does not attempt to capture

potential (permanent and time-varying) correlated individual UH and, therefore, may

still produce biased impacts of endogenous smoking and health histories despite pro-

viding an improved fit. Indeed, changes in the significance and signs of endogenous

variables is evident in the table. A comparison of the estimates from the model with-

out correlated UH (columns 1 and 2) and with correlated UH (columns 3 and 4) reveals

differences in the significance and functional relationship between one’s smoking his-

tory and his propensity to smoke currently. In particular, notice that variation in years

of smoking cessation no longer significantly impacts contemporaneous smoking when

correlated UH is introduced, while additional years of smoking duration and experience

increase the probability of smoking at a decreasing rate.37 (The sizes of the coeffi-

cients also exhibit differences, but changes in marginal effects are difficult to assess at

this point. We further examine marginal effects, and address the role of UH, after we

introduce simulations from the models.)

Before proceeding, we note the significance of the cigarette market variables in

the smoking equations. These variables, serving as a source of identification, are not

significant when included in the morbidity and mortality equations conditional on one’s

smoking history. The cigarette price and advertising variables impact smoking but

appear to do so in an unexpected direction. We estimated the model using prices and

advertising expenditures in level terms and found the expected signs: prices have a

negative effect on the smoking probability while advertising expenditure has a positive

effect. We do not include these level variables in our main specification because it is

hard to disentangle these terms, which vary only over time, from temporal effects.

37Determination of significance involves a joint test when variables enter as polynomials or interac-
tions.
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Table 6: Selected Parameter Estimates: Smoking in period t

Single equation FIML
without correlated UH with correlated UH

Variable Estimate Std. error Estimate Std. error

Smoker in t− 1, st−1 0.784 0.337 ** 1.631 0.871 *
Years of cessation, Ct 0.260 0.061 *** -0.109 0.086
C2t/100 -3.146 0.553 *** -0.576 0.653
Years of duration, Dt 0.110 0.010 *** 0.151 0.025 ***
D2t/100 -0.134 0.021 *** -0.156 0.041 ***
Years of experience, Et 0.105 0.011 *** 0.197 0.022 ***
E2t/100 -0.115 0.021 *** -0.207 0.042 ***
1[CVDt−1 = 1] -0.447 0.213 ** -0.538 0.296 *
1[CVDt−1 > 1] -0.684 0.324 ** -1.216 0.557 **
CANt−1 -0.620 0.452 -0.389 0.674
DIAt−1 0.129 0.495 0.386 0.574
E CVDt−1 -0.929 0.285 *** -1.394 0.355 ***
N CVDt−1 0.242 0.112 ** 0.404 0.113 ***
E CANt−1 -0.118 0.487 -0.135 0.540
E DIAt−1 -0.228 0.410 -0.578 0.508
E CVDt−1 * St−1 0.714 0.249 *** 0.893 0.330 ***
E CANt−1 * St−1 0.232 0.544 0.110 0.662
E DIAt−1 * St−1 0.592 0.467 0.376 0.695
BMIt−1 -0.069 0.104 -0.193 0.238
BMI2t−1/100 0.078 0.193 0.220 0.441
SBPt−1 0.039 0.015 *** 0.044 0.020 **
SBP2t−1/100 -0.013 0.005 ** -0.015 0.007 **
DBPt−1 -0.068 0.027 ** -0.067 0.033 **
DBP2t−1/100 0.036 0.016 ** 0.035 0.020 *
CHOt−1 0.006 0.005 0.009 0.007
CHO2t−1/100 -0.001 0.001 -0.002 0.002
BMI, SBP, DBP missing -1.000 1.559 -2.799 3.342
CHO missing 0.918 0.673 1.327 0.908
Cigarette price at t * Aget/10 0.327 0.100 *** 0.467 0.151 ***
Cigarette price at t squared/100 * Aget/10 -0.231 0.058 *** -0.314 0.088 ***
Cigarette price at t * Aget/10 * St−1 0.029 0.009 *** 0.019 0.012
Ad expenditure at t * Aget/10 -0.300 0.083 *** -0.273 0.105 ***
Ad expenditure at t * Aget/10 * St−1 0.098 0.072 0.009 0.093
Constant 2.281 1.827 4.916 4.232

Note: Specifications also include controls for age, education, ancestry, origin, cohort,
and year trends. Standard errors are in parentheses.
*** indicates joint significance at the 1% level; ** 5% level; * 10% level.
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Table 7 presents estimates of and standard errors on the coefficients of the observed

determinants of death by the end of period t conditional on being alive in period t.

We also examine cause of death conditional on dying in Appendix Table B3. Note

that the specification reflects updated values of the endogenous variables (i.e., includes

the period t behavior and health events). As with the previous table where we cannot

draw firm conclusions simply by examining the coefficients, we nonetheless can discuss

some interesting findings. First, while it may appear that current smoking reduces the

probability of death, one should note that each year of smoking duration significantly

increases the probability of death and current period smokers are likely to have a long

history of smoking. Second, disease is an important predictor of death, as expected.

Cardiovascular disease events and cancer diagnosis in the current period increase the

probability of death by the end of the period. While such events in the previous period

specifically do not have a statistically significant effect, having ever had these diseases

increases the death hazard. Higher levels of current health markers, such as body mass,

diastolic blood pressure, and cholesterol, predict eminent death. Third, it appears

that years of smoking cessation has no statistically significant effect on the probability

of dying, but this interpretation ignores the indirect channels embedded in the entire

system of equations. Continued smoking (i.e., a positive number of years of smoking

duration) significantly increases the probability of both morbidity and mortality. Thus,

smoking cessation (which sets duration to zero) eliminates an important detrimental

impact. Of course, experience is still positive after a quit. These dynamic effects will be

clearer when we simulate behavior of the individuals under different lifetime smoking

patterns.

Differences in the coefficient signs and significance across the models with and with-

out correlated UH are more apparent in the cause of death equation. Current smoking

significantly predicts death due to cancer, conditional on dying, and has a large but

imprecise impact on death due to cardiovascular disease. Diagnosis of cancer in the

current period or the previous period does explain cancer deaths before the next period

and cardiovascular events in the current period explain CVD deaths.

Appendix Tables B4, B5, and B6 present estimates of and standard errors on the

coefficients of the observed determinants of endogenous disease events in period t: the

number of cardiovascular events (B4); cancer diagnosis conditional on no diagnosis

prior to the current period (B5); diabetes diagnosis conditional on no diagnosis prior

to the current period (B5); and the continuous health marker body mass index (B6).

These per-period disease events define health history variables that explain the dynamic

smoking patterns of individuals over a lifetime. Because we allow for correlation between

these endogenous events and smoking behavior and mortality outcomes, we reduce bias
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Table 7: Selected Parameter Estimates: Mortality by end of period t

Single equation FIML
without correlated UH with correlated UH

Variable Estimate Std. error Estimate Std. error

Smoker in t, st -0.624 0.153 *** -1.428 0.506 ***
Years of cessation, Ct 0.009 0.010 0.004 0.012
C2t/100 -0.018 0.024 -0.012 0.026
Years of duration, Dt 0.074 0.013 *** 0.101 0.023 ***
D2t/100 -0.102 0.023 *** -0.132 0.033 ***
Years of experience, Et -0.014 0.009 -0.008 0.011
E2t/100 0.031 0.018 * 0.026 0.021
1[CVDt = 1] 0.476 0.112 *** 0.700 0.273 **
1[CVDt > 1] 0.692 0.193 *** 0.745 0.278 ***
CANt 0.874 0.175 *** 1.224 0.349 ***
DIAt 0.413 0.275 0.688 0.435
1[CVDt−1 = 1] 0.021 0.130 0.019 0.139
1[CVDt−1 > 1] 0.460 0.217 ** 0.437 0.242 *
CANt−1 0.288 0.219 0.342 0.254
DIAt−1 0.095 0.268 0.099 0.277
E CVDt−1 0.396 0.107 *** 0.377 0.116 ***
N CVDt−1 0.151 0.046 *** 0.162 0.047 ***
E CANt−1 0.604 0.122 *** 0.667 0.144 ***
E DIAt−1 0.555 0.111 *** 0.445 0.123 ***
BMIt -0.276 0.079 *** -0.350 0.097 ***
BMI2t/100 0.432 0.143 *** 0.497 0.172 ***
SBPt 0.015 0.012 0.015 0.013
SBP2t/100 -0.005 0.004 -0.005 0.005
DBPt -0.053 0.022 ** -0.052 0.023 **
DBP2t/100 0.040 0.013 *** 0.040 0.014 ***
CHOt -0.021 0.005 *** -0.019 0.007 ***
CHO2t/100 0.004 0.001 *** 0.004 0.001 ***
BMI, SBP, DBP missing -4.770 1.136 *** -6.164 1.442 ***
CHO missing -0.921 0.579 -0.708 0.740
ARTt -0.035 0.070 -0.049 0.074
Constant -1.557 1.740 1.285 2.288

Note: Specifications also include controls for age, education, ancestry, origin,
cohort, and year trends. Standard errors are in parentheses.
*** indicates joint significance at the 1% level; ** 5% level; * 10% level.
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in the estimated marginal impacts of interest in our study. The results presented in

the tables indicate that the parameters differ in sign as well as economic and statistical

significance between the specifications. Marginal impacts are described below using

simulations from the estimated model.

5.2 Ability of Empirical Model to Fit the Observed Data

Given the many features of our dynamic model, and the associated inability to fully

comprehend a variable’s impact by looking only at coefficients, we simulate smoking

behavior and health outcomes using the estimated model. To conduct our simula-

tions, we replicate the exogenous variables of each individual in the estimation sample

R=50 times. For each replication we simulate the initial conditions using the estimated

reduced-form equations. We then simulate smoking behavior and health outcomes

(morbidity and mortality) for one period using the dynamic equations. That is, we use

the estimated model and draws from the estimated correlated UH error distribution and

the i.i.d. error distributions to simulate the endogenous outcomes. We then update the

smoking and disease histories and simulate behavior and outcomes in the subsequent

period for those who are not simulated to die. Analogously, we simulate outcomes until

everyone in the simulation sample has died.38 Note that our simulations use the parts of

the model that are explained by observed heterogeneity (i.e., the estimated coefficients

and observed exogenous and endogenous variables) as well as unobserved heterogeneity

captured by the estimated permanent UH, the estimated time-varying UH, and the

random error draw for each outcome each period. Predictions only capture what is

explained by observed variation. All three sources of UH play an important role in

our simulations because they determine current behavior and outcomes that impact

subsequent behavior and outcomes through our system of dynamic, correlated equa-

tions. Thus, the fit we capture is one that demonstrates the comprehensive ability of

our model to explain life-cycle observations.

The top panel of Table 8 displays the distribution of age and cause of death for the

observed sample (used in estimation of the model) and the simulation sample (generated

from the estimated model). Our purpose here is to show how well our estimated dynamic

data generating process fits the observed data. Our preferred model captures the age

and cause of death distributions quite well, and correctly simulates the percent who

died by the end of 1996 (or 22 periods of the model).

38In cases where we simulate someone to survive who, in the data, is observed to die, we must
impute values of his exogenous variables. Age is increased by two years every period that the replicated
individual is alive. The health markers (i.e., systolic and diastolic blood pressure and cholesterol levels)
are imputed based on an individual’s last observed values and averages among individuals his age.
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Table 8: Age and Cause of Death: Observed and Simulated Data

Percent Age of death distribution (percentile) Cause of death
Sample died Mean 10th 25th 50th 75th 90th CVD Cancer Other

Deaths observed through 1996 (right-censored; estimation sample)
Observed 87.8 72.6 58 66 74 80 85 42.6 26.3 31.6
Simulated 89.0 72.3 58 66 73 79 85 43.9 26.2 30.0

Deaths observed through 2009
Observed 100.0 74.4 59 68 76 82 88
Simulated 100.0 74.0 59 67 75 82 88

Note: Observations are right-censored if the individual (observed or simulated) has not died
through 1996 (two years after exam 23).

In the lower panel of Table 8, we evaluate our model’s ability to predict age of death

outside of the sample used in estimation of the model. When we began this project,

we were granted access to the FHS data from NHLBI through 1996. However, the

original cohort of the FHS continued to be followed. We recently acquired age of death

(but not cause of death) for the original sample through 2009. Using our estimated

model to simulate smoking behavior and health outcomes until death for the replicated

sample, we can determine how well our model captures the true observed age of death

of individuals used in estimation who had not died through 1996. By 2009, everyone

in our estimation sample had died. The average age of death was 74.4 years. When

we use our model of lifetime smoking, morbidity, and mortality to simulate the sample

until death, we find a simulated average age of death of 74.0. This ability of our model

to match the observed out-of-sample death ages gives us additional confidence that the

model explains lifetime smoking and health very well.

Comparisons of the simulated data to the observed data provide measures of how

well our model captures the dynamic behaviors and outcomes of interest. Up to this

point, we have described the FHS data over time, with calendar year or period (two

years) being the unit of observation per person. However, the main purpose of the

empirical model is to explain smoking behavior and health outcomes over an individual’s

lifetime (while controlling for aggregate variation that affects all individuals over time).

From this point forward we discuss the model in terms of its ability to fit lifetime profiles

of smoking, morbidity, and mortality by age.

First, we graphically compare the age-specific outcomes of the simulation sample,

for those years when the replicated individual is observed to be alive, with the outcomes

of the estimation sample. Figure 2 presents the model fit for each of the dependent
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variables (excluding cause of death) by age.39 We slightly overstate smoking behavior

at younger ages and understate it at older ages, but generally capture the overall decline

in smoking by age quite well. Our mortality model fits very well even into ages above

70 when observed death rates are less precise due to small sample sizes. The model

also accurately predicts, by age, small probability events such as one or more CVD

events, cancer diagnosis, and diabetes diagnosis. We also fit body mass as measured

by BMI very well. Additionally, chi-squared tests indicate that we cannot reject that

the averages of the simulated data from our data generating process are equivalent to

those of the observed data.

Second, we use the simulated data to assess the ability of the model to capture

important smoking transitions such as quitting and relapse, rather than simply levels

of smoking. Figure 3 displays the probability of quitting smoking at each age conditional

on smoking in the previous period (two years earlier on average). Again, our model

does an exceptional job of capturing the quitting trend by age.40 The probability of

relapse is more difficult to graph, yet average simulated relapse rates of 44.1 percent

among men who quit smoking is not statistically different from the observed relapse

rate of 37.5 percent.41 Among those who relapse, the observed and simulated mean

length of smoking cessation between spells of smoking is 3.3 and 4.2 years, respectively;

the mean age of relapse is 53.9 and 54.6 years.

Appendix D shows the empirical importance of modeling correlated individual UH.

In our model UH captures unobservables, both those that are common across a lifespan

(like genetics) and ones that vary over time (such as unobserved stress), which would

bias the estimated impacts of smoking and health histories. We show there are im-

portant differences in smoking behavior, mortality distribution, and the link between

smoking and death across the various permanent UH types. In addition to providing a

better fit through reduced selection and endogeneity, these results highlight the impor-

tance of distributional issues that can factor into the choice of policy variables such as

cigarette taxes or regulations.

39We do not describe the fit of the five reduced-form (not dynamic) initial condition equations;
this information is available from the authors. The initial conditions, which are correlated with the
permanent individual UH, are estimated jointly with the per-period equations in order to aid in
identification of the UH distributions. Appendix Table B7 provides coefficient estimates for the initial
condition equations.

40Note that behavior at the youngest and oldest ages reflects small sample sizes for these groups in
our data.

41In this calculation, we condition on quits observed after age 30.
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Figure 2: Model Fit of Smoking, Morbidity, and Mortality Outcomes
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Figure 3: Model Fit of Quit Behavior conditional on Smoking in Previous Period
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5.3 Simulated Lifetime Smoking Scenarios

Having demonstrated the ability of our estimated model to capture observed behavior

and outcomes accurately and to predict mortality well out-of-sample, we now turn to

assessment of the impact of smoking on morbidity and mortality. To do so, we conduct

several simulations in which we impose different lifetime smoking patterns. For this

analysis, we simulate smoking behavior and health outcomes until death. That is,

there is no right censoring of the data; every simulated individual is observed until

death.42

Row 1 of Table 9 presents the age and cause of death distributions when all in-

dividuals in the simulation sample (i.e., a sample composed of R (=50) replications

of exogenous variables of the N (=1464) sample observations) are simulated to never

smoke (where death is determined by the model based on sequential updates of mor-

bidity throughout the lifecycle). Average age of death is 75.5 years. Row 2 describes

the mortality outcomes of the simulation sample when everyone is assumed to smoke

from age 18 through death.43 Age of death is, on average, 71.2, or 4.3 years earlier than

42Simulations are conducted until the year 2024 (or hypothetical exam 42). Recall that individuals
are age 30-62 in 1952. Every replicated individual is simulated to die. In the baseline simulation
(where we impose no smoking pattern but use the model to simulate smoking histories), only 0.8% of
individuals are simulated to die after age 100. In all simulations in which someone is simulated to die
after age 100, we assume death occurs at age 100 for summary calculations.

43For these simulations, initial smoking duration is set to initial age - 18. We also simulate the
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a non-smoker. For comparison, the (biased) unconditional difference-in-means in age

of death between lifelong smokers and nonsmokers is 9.3 years using the right-censored

FHS estimation sample of men.44 We contend that the observed and unobserved hetero-

geneity that we model reduces the bias in estimates of the impact of life cycle smoking

behavior and morbidity on mortality. Additionally, CVD accounts for 16.6 percent (or

(46.4 - 39.8 =) 6.6 percentage points) more deaths for smokers versus non-smokers,

while death from cancer rises 40 percent (or (28.0-20.0=) 8.0 percentage points).

Table 9: Age and Cause of Death: Simulated Data by Smoking Scenario

Age of death distribution (percentile) Cause of death
Smoking scenario Mean 10th 25th 50th 75th 90th CVD Cancer Other

Never smoked 75.5 61 69 77 83 89 39.8 20.0 40.2
Smoked continuously 71.2 57 64 71 79 85 46.4 28.0 25.5

from age 18

Started smoking at 18 and quit at:
Age 40 75.9 61 69 77 84 90 38.7 28.0 33.3
Age 50 74.2 55 67 76 83 89 39.6 25.4 35.0
Age 60 71.6 57 61 72 80 87 42.1 23.7 34.1

25 Years of smoking:
Ages 13-48 74.3 56 67 76 83 89 39.4 25.8 34.9
Ages 23-58 72.8 57 63 74 82 88 41.8 23.6 34.6

Continuous smoking with a gap between:
Ages 30-35 71.0 60 66 71 77 82 52.5 27.7 19.8
Ages 40-45 72.2 62 68 73 78 82 53.1 27.8 19.2
Ages 50-55 73.0 57 69 75 79 83 52.2 27.3 20.5

More importantly for policy purposes, we calculate the expected gain (in life years)

of quitting smoking at particular ages. Relative to smoking continuously, quitting

smoking at ages 60, 50, and 40 implies an increase in longevity of 0.4, 3.0, and 4.7

years, respectively. The heavily cited Doll, et al. work finds increases of 3, 6, and 9

years. Our findings suggest that these commonly-used figures are inflated by nearly

50 percent. Note that while quitting by age 40 produces a lifespan distribution that

is almost identical to that of never smokers, the likelihood of death by cancer is still

smoking scenarios in Table 9 with smoking initiation at age 13 rather than 18. The age of death
distribution is shifted to the left slightly (i.e., younger). Results are available from the authors.

44Restricting our calculations to death before 1998 (i.e., the period when we observe both smoking
and health in our data), the difference in the simulated death ages of never smokers and continual
smokers is 3.8 years.
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proportionately higher. Interestingly, quitting smoking lowers the probability of death

by CVD relative to cancer or other causes, yet the history of smoking among former

smokers still manifests itself in a higher probability of a cancer-related death. Related,

Taylor et al. (2002) find that quitting smoking at age 35 extends life expectancy of men

by 6.9 to 8.5 years relative to those who continue to smoke. They also find that quitting

earlier is more beneficial than quitting later. While their empirical results are based

on a larger sample of individuals than ours, it is not a nationally representative sample

and only 20 percent of the sample had died during the study period. Our findings using

their same specifications are similar to theirs. However, when we evaluate results using

our preferred model with additional sources of heterogeneity and more observed deaths,

our estimates of the benefits of quitting decrease significantly.

Also detailed in Table 9, we examine differences in age and cause of death for

individuals with the same smoking experience but different ages of initiation (and hence

also different ages of quitting, conditional on survival). We find that starting smoking

later in life (i.e., age 23 versus 13) leads to a lower life expectancy by 1.5 (=74.3 - 72.8)

years. Yet, death by cancer is more likely when smoking is initiated earlier and death

by CVD is more likely when smoking occurs at older ages.

Lastly, we examine the impact of smoking cessation followed by relapse. We simulate

individuals to have a 5-year reprieve from smoking at the ages of 30-35, 40-45, or

50-55. In all simulations the individuals began smoking at age 18 and smoked until

death (following the single 5-year cessation period). A small spell of cessation has no

statistically significant difference on life expectancy (from that of continuous smokers)

if it occurs at younger ages. If the 5-year cessation occurs later, there is a slight increase

in average ages of death. Death attributable to cancer or CVD receives similar weights,

relative to other causes, regardless of the age of cessation. Interestingly, CVD deaths

are 13 percent more prevalent (about 6 percentage points) for individuals with a 5-year

gap in smoking than those who have smoked continuously since age 18.

While both age of death and cause of death (i.e., mortality) vary by smoking behav-

ior over the lifecycle, we also evaluate differences in quality of life (i.e., morbidity). We

calculate the proportion of our simulation sample who are ever diagnosed with cancer

or ever experience a cardiovascular disease incident and report these proportions by

lifetime smoking pattern. However, we do not present disease incidence at a given age

due to the problem of dynamic selection: given our mortality results, those simulated

to never smoke have more life years in which to potentially become ill. Rather, Figure 4

presents simulated lifetime disease incidence by simulated age of death across different

smoking patterns. Our results suggest large differences in lifetime disease incidence by

smoking pattern. For example, among those who die at age 70, our simulations show
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that smoking continuously from age 18 produces an 8 percentage points higher like-

lihood of ever being diagnosed with cancer than never smoking (panel b). While the

cancer gap between always and never smokers grows as age of death increases, we find

that the fairly constant gap associated with cardiovascular disease disappears at death

ages above 80 (panel a). Differences in age of quitting smoking do not explain CVD

and cancer incidence of smokers (panels c and d), except for those with long longevity.

Smokers who live longer (older than age 75 or 80) exhibit higher incidence of CVD

and cancer in their lifetimes if they quit earlier. These findings suggest that policy

aimed at smoking prevention more so than quits is beneficial if the goal is to improve

quality-adjusted lifespans.
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Note: Each figure represents the simulated incidence of ever being diagnosed with or experiencing
the respective event by the simulated age of death and by different counterfactual smoking histories.

Figure 4: Morbidity Outcomes by Age of Death
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6 Discussion

Based on our findings, we concur with the universal evidence in the medical and eco-

nomics literatures that smoking is detrimental to health measured by both morbidity

and mortality. Our results suggest, however, that the mortality consequences of smok-

ing typically cited and used by policymakers are overstated by as much as 50 percent

(i.e., a difference in age of death of 4.3 years on average versus the existing evidence of

9.3 years). As an example of why accurate estimates are important, consider the U.S.

Food and Drug Administration’s recent evaluation of the costs and benefits of smoking

cessation in order to determine the appropriateness of a particular regulatory action

that will impact smoking behaviors (Chaloupka et al., 2014). The economic analysis

has received much attention due to the suggestion that the benefits be discounted to

reflect a smoker’s lost happiness that would accompany smoking reductions; less at-

tention has been paid to the calculations of the morbidity and mortality consequences

of reduced smoking. Irrespective of the discounting issue, the “inflated” figures being

used to evaluate policy and regulatory decisions could lead to costly implementation

with significantly reduced impacts.

Our results reiterate the importance of quitting at younger ages, with improvements

in life expectancy of, for example, 4.7 years versus 3.0 years if the cessation occurs at

age 40 versus 50. Additional new findings show the importance of relapse avoidance:

short spells of non-smoking followed by relapse has very little benefit. In addition to

policies that encourage quitting, emphasis should be placed on quit maintenance. Ces-

sation programs without follow-up support for former smokers will not be effective in

extending life if relapse occurs. Our model also demonstrates that rates of death at-

tributed to CVD and cancer as well as lifetime incidence of disease (i.e., morbidity) differ

by lifetime smoking patterns. By applying our findings and accurate pecuniary costs

and measures of pain and suffering by disease, more comprehensive cost-effectiveness

analyses can be used to evaluate smoking policy recommendations expected to impact

smoking behaviors differently.

Admittedly, the nature of smoking has changed for recent generations compared to

that of the FHS original cohort. Changes include the age of initiation, the use of filters,

the levels of tar, the modes of smoking, etc. Some of these changes are technological

and might change underlying estimated parameters; others are behavioral and should

support our findings. The offspring and the third generation of the FHS original cohort

make it possible for us to follow up our analysis using the same techniques with a more

recent cohort. We emphasize the importance of continued and new data acquisitions,

like the FHS, that follow individuals at frequent intervals over a long period of time.
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A Sample Construction

If smoking behavior is missing for any exam(s) it becomes difficult to construct variables

that accurately reflect the history of one’s behavior (e.g., years of cessation, duration,

and experience). Missing smoking observations require that we either impute behavior

or drop individuals from our research sample. Table A1 details our progress with as-

signing smoking behavior during missing exams by using observed individual responses

from other exams. As our sequentially-applied assumptions introduce more potential

noise, the resulting sample size increases. Ultimately, we select a sample of men (sample

E) that minimizes this type of imputation while maximizing the number of individuals

we can follow. Additional individuals are dropped from the sample if they are missing

other important variables.

Here we address two potential concerns with our sample selection: (i) omitting

individuals with particular patterns of missing smoking data may lead to an unrepre-

sentative sample; (ii) filling in missing observations should be done in a limited fashion

so as to avoid adding data artifacts and to not contribute to item (i). Our detailed

consideration of these concerns fall into three general categories:

• individuals with filled-in data are not observationally different

• most individuals have only a few missing observations

• some omissions that one might be likely to assume possible are not common here

In addition it is worth recalling that these issues are endemic to the empirical smoking

literature where high quality panel data is quite rare. Consider, for example, the

NELS:88 data set (https://nces.ed.gov/surveys/nels88/), which has been used to

study teen smoking behavior. In the first three waves of NELS:88 (1988, 1990, 1992)

even if we limit the sample to kids who were on grade or permanent drop outs, 17%

(2237 of 12954 total kids) have missing smoking data. Our study involves a far longer

period (eight times as many periods) and a much older period, so the rather complete

smoking questions is actually a very significant strength of our analysis.

The first step is to consider the role of sample selection. Table A2 reports Pearson

χ2-tests of whether individuals in our final sample (Sample E, those with no missing

data or some filled-in data) differ from those from the FHS that are omitted from our

analysis. We consider a variety of covariates used in the empirical analysis. For none of

the variables can we reject the null that the individuals in the two groups are identical.

The next step is to examine the patterns of missing smoking data. In both the

full population and the sample we examine (Sample E) there are few cases with large

2
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Table A2: Pearson χ2-test: Comparisons of Sample E (N=1754) vs Individuals omitted
from sample (N=520)

Covariate χ2 df p

Education 3.24 5 0.663
Country of birth 1.13 1 0.288
Italian Ancestry 2.35 1 0.126
Age (by decade) 6.90 4 0.142

Age is based on age at first exam and is grouped into decade intervals (20s, 30s, 40s,
50s, 60s, 70s) to ensure adequate sample size in each cell.

numbers of missing data, and it is uncommon to have missing data interspersed between

periods where data are present. This means the patterns of missing data that one might

think of are actually quite rare. It is not possible to literally consider every such pattern,

but the most challenging cases involve either large number of missing data or particular

streaks of missing data, and we address both of these below.

Table A3 presents some descriptive statistics on missing data for the full population

and our Sample E. In each case we present mean, medians and (to show what extreme

values look like) the ninetieth percentiles of the distribution. The first two rows list the

number of missing and imputed observations. There are typically only a few missing

observations per person. And among those in the population but not in Sample E

(those not in our empirical analysis, N=520), the median is four missing observations.

The average person has about two missing observations imputed (using the rules for

Sample E).

The remaining rows examine streaks of missing or available data (i.e., adjacent

periods with no/available smoking information in the original raw data). We find most

streaks of available data are relatively long, of missing data are relatively short, and

most people only have a few such streaks. Together these indicate that anomalous

patterns one might think occur cannot be common, since many involve a deviation

from at least one of these results. The third row shows that for most people the longest

streak of missing data is about two. Even among the population not in Sample E, the

median maximum missing streak is two periods. The next two rows show that most

people only have a few streaks of missing and available data (the median person has

one streak of missing data and two streaks of available data in both the population and

sample (and, even at the extreme ninetieth percent, a person would have seven total

streaks).

4



The last two rows report the length of streaks of available data. In the population

the average person’s shortest streak is about eight periods and the longest is ten. The

first point is of particular interest since most of the patterns that would require unusual

omissions of an individual or excessive imputations would imply that there would be

very short streaks of available data. Note that while the median values for the minimum

streak are low, this is largely due to individuals who die early. (Calculated as a median of

the number of observed periods, the median minimum streak is 0.18 for the population

and 0.25 for Sample E.)

Table A3: Patterns of Missing Smoking Data (24 periods)

90%
Statistic Mean Median Percentile Std Dev.

Full Population (N=2274)
Number of Missing Observations 3.246 2 9 3.95
Number of Imputed Observations 2.040 1 5 2.69
Maximum Streak of Missing Observations 2.284 1 6 3.28
Number of Streaks of Missing Observations 1.501 1 3 1.28
Number of Streaks of Available Data 2.068 2 4 2.07
Maximum Streak of Available Data 10.440 9 22 7.97
Minimum Streak of Available Data 7.661 2 22 8.68

Sample E (N=1754)
Number of Missing Observations 2.303 2 5 2.85
Number of Imputed Observations 2.251 2 5 2.83
Maximum Streak of Missing Observations 1.509 1 3 2.04
Number of Streaks of Missing Observations 1.327 1 3 1.26
Number of Streaks of Available Data 1.997 2 3 1.08
Maximum Streak of Available Data 12.068 13 24 7.87
Minimum Streak of Available Data 9.239 2 24 9.01

One last issue is: why is there missing data?. This could be due to either missed

exams or individuals not answering the smoking question conditional on being at the

exam. The table below shows that in almost all of the cases it is due to a missed exam,

so no data at all is available for that person-exam. The main exceptions are exams 1

and 4 (where there are relatively few cases of missing data) and exam 11.

5



Table A4: Proportion of Missing Smoking Observations Due to Missed Exam

Exam Number Proportion

1 0.240
2 1.000
3 1.000
4 0.703
5 0.995
6 1.000
7 0.950
8 1.000
9 0.991
10 0.984
11 0.000
12 0.981
13 0.995
14 0.991
15 0.994
16 1.000

First Sixteen Exams only (Kannel et al., 1988). The other explanation for the missing
data is not answering the smoking question at the exam. Note that this table is based
on the raw exam number from the FHS rather than the timing convention used in the
empirical analysis (defined in Section 3.2).
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B Additional Estimation Results
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Table B6: Selected Parameter Estimates: Body Mass Index in period t

Single Equation FIML
Variable Without Correlated UH With Correlated UH
Variable Estimate Std. error Estimate Std. error

Smoker in t− 1, st−1 0.005 0.005 0.001 0.005
Years of cessation, Ct 0.000 0.000 -0.001 0.000 **
C2t/100 0.001 0.000 * 0.001 0.001 **
Years of duration, Dt -0.001 0.000 *** -0.001 0.000 ***
D2t/100 0.002 0.001 ** 0.002 0.001 ***
Years of experience, Et 0.000 0.000 * 0.001 0.000 ***
E2t/100 -0.001 0.001 ** -0.002 0.001 ***
1[CVDt−1 = 1] 0.004 0.005 -0.001 0.005
1[CVDt−1 > 1] 0.017 0.009 * 0.014 0.009
CANt−1 0.020 0.011 * 0.007 0.011
DIAt−1 -0.018 0.010 * 0.004 0.012
E CVDt−1 0.003 0.005 0.005 0.006
N CVDt−1 -0.003 0.002 -0.006 0.004
E CANt−1 -0.009 0.007 -0.001 0.007
E DIAt−1 0.000 0.005 -0.021 0.007 ***
E CVDt−1 * St−1 -0.003 0.006 -0.019 0.016
E CANt−1 * St−1 -0.029 0.013 ** -0.006 0.013
E DIAt−1 * St−1 -0.010 0.011 0.002 0.006
BMIt−1 0.102 0.002 *** 0.110 0.011 ***
BMI2t−1/100 -0.016 0.004 *** -0.044 0.022 **
SBPt−1 -0.001 0.000 -0.001 0.000
SBP2t−1/100 0.000 0.000 0.000 0.000
DBPt−1 0.002 0.001 ** 0.002 0.001 **
DBP2t−1/100 -0.001 0.000 ** -0.001 0.000 **
CHOt−1 0.000 0.000 0.000 0.000
CHO2t−1/100 0.000 0.000 0.000 0.000
BMI, SBP, DBP missing 2.682 0.043 *** 2.637 0.190 ***
CHO missing -0.014 0.019 0.000 0.020
ARTt−1 0.000 0.002 -0.001 0.002
Constant -0.003 0.048 -0.734 0.150 ***

Note: Specifications also include controls for age, education, ancestry,
origin, cohort, and year trends. Standard errors are in parentheses.
*** indicates joint significance at the 1% level; ** 5% level; * 10% level.

13



T
ab

le
B

7:
P

ar
am

et
er

E
st

im
at

es
:

In
it

ia
l

C
on

d
it

io
n
s

(F
IM

L
w

it
h

co
rr

el
at

ed
U

H
)

N
ev

er
S

m
ok

ed
C

u
rr

en
t

S
m

o
ke

r
S

m
o
k
in

g
D

u
ra

ti
o
n

C
V

D
B

M
I

A
ge

(y
ea

rs
)

0.
06

7
0.

02
3

*
*
*

-0
.1

1
7

0
.0

3
5

*
*
*

0
.1

1
0

0
.0

1
0

*
*
*

0
.1

3
2

0
.0

6
1

*
*

0
.0

0
3

0
.0

0
3

E
d

u
c:

gr
ad

e
sc

h
o
ol

-0
.1

23
0.

19
9

-0
.5

3
4

0
.2

9
9

*
0
.0

5
8

0
.0

5
4

-0
.6

4
7

0
.4

7
9

-0
.0

1
9

0
.0

3
1

E
d

u
c:

so
m

e
h

ig
h

sc
h

o
ol

-0
.5

24
0.

22
2

*
*

0
.4

1
2

0
.3

5
6

0
.0

2
7

0
.0

4
6

-0
.6

9
3

0
.5

8
9

-0
.0

2
8

0
.0

3
0

E
d

u
c:

so
m

e
co

ll
eg

e
-0

.2
91

0.
27

2
-1

.1
4
3

0
.3

9
5

*
*
*

-0
.1

2
8

0
.0

6
1

*
*

-0
.6

5
6

0
.6

8
3

-0
.0

2
5

0
.0

3
6

E
d

u
c:

co
ll

eg
e

d
eg

re
e

0.
37

1
0.

24
8

-0
.6

2
8

0
.3

8
5

-0
.1

7
9

0
.0

5
7

*
*
*

-0
.5

7
8

0
.6

2
3

-0
.0

1
2

0
.0

2
9

E
d

u
c:

p
os

t
co

ll
eg

e
0.

63
5

0.
24

9
*
*

-0
.2

1
6

0
.4

4
0

-0
.2

8
0

0
.0

7
8

*
*
*

0
.2

8
8

0
.5

7
4

0
.0

4
8

0
.0

3
2

B
or

n
ou

ts
id

e
U

.S
.

0.
04

0
0.

19
7

-0
.2

3
1

0
.2

9
3

-0
.0

7
2

0
.0

6
2

-0
.2

0
0

0
.4

5
9

-0
.0

0
7

0
.0

2
6

It
al

ia
n

an
ce

st
ry

0.
35

1
0.

17
6

*
*

-0
.2

1
9

0
.2

5
9

-0
.0

1
6

0
.0

4
2

-0
.5

1
0

0
.5

6
0

0
.1

4
2

0
.0

2
5

*
*
*

O
ld

er
co

h
or

t
-0

.2
88

0.
26

9
-0

.1
4
4

0
.3

9
2

-0
.2

0
7

0
.0

9
9

*
*

-0
.0

1
6

0
.6

2
7

-0
.0

3
3

0
.0

3
7

A
d

ex
p

en
d

it
u

re
at

ag
e

10
-1

4
0.

17
7

0.
11

1
-0

.4
2
8

0
.1

7
2

*
*

0
.2

2
1

0
.3

3
5

-0
.0

0
9

0
.0

1
1

A
d

ex
p

en
d

it
u

re
at

ag
e

15
-1

8
0
.0

6
5

0
.0

3
3

*
*

N
u

m
b

er
of

si
b

li
n
gs

0.
01

9
0.

03
2

-0
.0

0
1

0
.0

4
6

0
.0

0
6

0
.0

0
9

-0
.0

0
6

0
.0

8
8

-0
.0

0
7

0
.0

0
3

*
*

O
n

ly
ch

il
d

-0
.8

69
0.

44
1

*
*

1
.2

3
8

0
.8

0
6

0
.1

0
6

0
.0

6
5

-0
.4

6
4

1
.0

9
2

-0
.0

1
3

0
.0

3
7

S
ib

li
n

g
in

fo
rm

at
io

n
m

is
si

n
g

-0
.5

68
0.

27
2

*
*

1
.8

4
9

0
.4

4
1

*
*
*

0
.1

4
9

0
.0

6
5

*
*

-0
.3

2
3

0
.7

6
9

0
.0

0
8

0
.0

3
6

B
ir

th
or

d
er

(u
p

to
5t

h
)

-0
.0

08
0.

05
8

0
.0

2
4

0
.0

9
1

-0
.0

1
2

0
.0

1
6

-0
.3

8
3

0
.2

1
2

*
0
.0

1
4

0
.0

0
9

*
F

ir
st

b
or

n
ch

il
d

-0
.7

3
9

0
.6

5
5

0
.0

0
5

0
.0

2
6

C
on

st
an

t
-5

.5
56

1.
35

4
*
*
*

6
.9

5
8

1
.7

2
1

*
*
*

-2
.2

8
8

0
.4

9
0

*
*
*

-7
.3

0
7

3
.1

8
7

*
*

2
.4

6
9

0
.1

4
1

*
*
*

T
im

e-
in

va
ri

an
t

u
n

ob
se

rv
ed

h
et

er
og

en
ei

ty
µ
2

0.
71

9
0.

81
2

2
.0

4
2

0
.4

5
8

*
*
*

-0
.0

4
9

0
.0

7
2

-1
.4

9
5

0
.6

0
7

*
*

-0
.3

0
9

0
.0

4
6

*
*
*

µ
3

1.
82

3
0.

84
4

*
*

0
.5

5
3

0
.6

1
9

0
.0

2
3

0
.1

0
9

0
.7

9
5

0
.7

4
3

0
.7

2
2

0
.0

6
2

*
*
*

µ
4

2.
08

6
0.

85
4

*
*

1
.3

5
5

0
.6

4
0

*
*

-0
.0

6
6

0
.0

7
5

-2
.4

7
7

1
.1

6
8

*
*

0
.0

4
0

0
.0

6
3

µ
5

-1
.0

60
5.

47
2

2
.7

5
7

0
.6

7
4

*
*
*

-1
.9

9
1

0
.2

2
4

*
*
*

-2
.6

6
6

1
.0

6
9

*
*

0
.0

2
5

0
.1

1
0

µ
6

1.
30

7
0.

89
2

0
.6

1
1

0
.4

4
0

-0
.1

1
8

0
.1

1
2

-2
.2

7
5

1
.7

2
0

0
.3

2
2

0
.0

5
6

*
*
*

N
ot

e:
S

ta
n

d
ar

d
er

ro
rs

ar
e

in
p
ar

en
th

es
es

.
**

in
d
ic

a
te

s
jo

in
t

si
g
n

ifi
ca

n
ce

a
t

th
e

5
%

le
ve

l;
*

1
0
%

le
ve

l.
W

e
u

se
ag

e
10

-1
4

ex
p

os
u

re
to

ex
p

la
in

in
it

ia
ti

o
n

o
f

sm
o
k
in

g
,

a
n

d
w

e
u
se

a
g
e

1
5
-1

8
ex

p
o
su

re
to

ex
p

la
in

o
b

se
rv

ed
d

u
ra

ti
o
n

o
f

sm
o
k
in

g
w

h
en

w
e

fi
rs

t
ob

se
rv

e
an

in
d

iv
id

u
al

in
ou

r
d

at
a.

In
d

iv
id

u
a
ls

w
h

o
sm

o
k
e

in
to

a
d

u
lt

h
o
o
d

,
g
en

er
a
ll

y,
“
d

ev
el

o
p

ed
th

e
h

a
b

it
”

in
a
d

o
le

sc
en

ce
ra

th
er

th
an

“j
u

st
ex

p
er

im
en

te
d

”.
F

ir
st

b
or

n
ch

il
d

is
o
m

it
te

d
fo

r
a
ll

in
it

ia
l

sm
o
k
in

g
eq

u
a
ti

o
n

s
b

ec
a
u

se
th

er
e

w
a
s

n
o
t

en
o
u

g
h

va
ri

a
ti

o
n

in
th

e
va

ri
ab

le
in

th
e

sm
al

le
r

sa
m

p
le

si
ze

s
of

th
e

co
n

d
it

io
n

ed
eq

u
a
ti

o
n

s:
cu

rr
en

t
sm

o
ke

r|e
ve

r
sm

o
ke

d
a
n

d
d
u

ra
ti

o
n
|c

u
rr

en
t

sm
o
ke

r.

14



C Historical Data

In this appendix we discuss the cigarette advertising and price data used to construct

important cigarette market variables over the 19th and 20th centuries. For each variable

(i.e., average advertising expenditure and average price), we first provide a justification

of its use as an instrument for cigarette smoking and then discuss details associated

with construction of the advertising expenditure and price time series. Some of the

discussion focuses on the state of Massachusetts, since the FHS data are from the town

of Framingham.

C.1 Advertising and Cigarette Consumption

We use industry-wide advertising spending to instrument for cigarette initiation during

the years 1895-1939 and for smoking behavior over the years 1950-1996. There are

two key conditions needed for identification: smoking initiation must be responsive

to advertising and trends in advertising spending must be aimed at market expansion

rather than brand switching. We deal with each of these issues in turn making reference

to the literature.

The first condition is that firm advertising impacts smoking behavior. There are

several channels by which this could occur. For example, during the pre-World War II

period cigarette advertising increased social acceptability of smoking (particularly for

women for whom it had been considered taboo), promoted the image of smokers as inde-

pendent and glamorous, and listed health benefits such as hunger suppression (Brandt,

2007). There is empirical evidence linking advertising to youth smoking initiation (and

almost all smokers in our data begin smoking by the teen years). In their survey of the

economics of smoking, Chaloupka and Warner (2000) note that advertising has a posi-

tive and significant impact on teen smoking initiation in studies using individual-level

data. Borden (1942), Tennant (1950), and Pierce and Gilpin (1977) note that cigarette

advertising during our study period was primarily targeted to groups, such as female

youths, which had not smoked previously, and that these groups experienced greater

increases in smoking initiation rates at those times. Telser (1962) provides estimates

which show that firm-level cigarette advertising increased overall smoking levels during

1925-1939. (Participants in the FHS original cohort were born between 1886 and 1918

and were in their teens between 1900 and 1932.)

The second condition deals with the intentions underlying the decision to advertise.

Advertising can both increase demand (the focus here) and also lead to brand switching

(which might not increase smoking initiation). The main threat to identification would

be if the latter effect predominates or if it changes in importance over time. In the
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period through 1912 this is not a major concern since cigarettes and all other forms of

tobacco were sold by a monopolist, the American Tobacco Company, also referred to as

the Tobacco Trust. Since there was limited variation of prices and market segmentation

at this time, there would be little advertising related to brand-names. In the post-Trust

period, the industry largely moved in lock-step. The main cigarette manufacturers were

convicted in 1941 of violating the Sherman Act, both Section 1 (restraint of trade) and

Section 2 (monopolization). For example, the wholesale prices of all leading brands were

identical from 1928 to 1946 and virtually identical prior to that with manufacturers

changing prices within days of one another. In such an environment of likely tacit

collusion, an important feature of advertising was to increase smoking overall as much

as to promote individual brands. Echoing the goals of smoking advertising in the

last paragraph, George Washington Hill, president of American Tobacco, testified at

the 1941 anti-trust trial: “The impetus of those great advertising campaigns not only

built this for ourselves, but built the cigarette business as well ... You don’t benefit

yourself most, I mean, altogether ... you help the whole industry if you do a good

job” (p. 137, Tennant (1950)). There were two periods of relatively strong competition:

the period immediately following the dissolution of the Tobacco Trust and the 1930s

with a short-lived rise of economy cigarettes. Counter to what would be expected

under brand-switching, advertising moved erratically in the first period and decreased

during the latter period (see Figure C1). Also Telser (1962) shows that advertising

at the brand-level was market expanding and that brand-stealing effects are small in

magnitude during the 1920s and 1930s.

C.2 Construction of Advertising Expenditures Time Series

Annual nominal advertising spending on cigarettes, exclusive of free goods (e.g., give-

aways of cigarettes) and other non-traditional advertising, comes from a variety of

sources. Spending for the years 1893-1913 are from United States Department of Com-

merce (1915), which lists advertising spending per cigarette and also total cigarette

sales. These totals include the entire cigarette business of the American Tobacco Com-

pany (the Tobacco Trust), exclusive of exports and foreign manufacturing business as

well as Turkish cigarettes. Spending for the years 1893-1910 and the spending by the

Trust’s successor companies for 1912-1913 are government assembled totals completed

in the wake of the the Supreme Court’s break-up of the Trust in 1911. (No data are

available for 1911 and spending is interpolated for that year).

Advertising expenditure for the years 1914-1928 are based on Nicholls (1951). Nicholls

lists R.J. Reynolds Tobacco Company’s cost of advertising, exclusive of gratis goods.
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Largely due to its Camel brand, over most of this period Reynolds was the lead-

ing cigarette producer and it annually sold between a third and almost half of all

cigarettes. The aggregate spending on cigarettes is approximated by dividing this total

by Reynolds’ share of total cigarettes and multiplying this by the share of cigarettes

among all tobacco products.

Expenditures for the years 1929-1949 are drawn directly from Fujii (1980). He uses

a variety of primary and secondary sources to create an index of corporate cigarette

advertising. Expenditures for the years 1950-1962 come from Schneider et al. (1981).

They credit their series to a telephone interview with Television Bureau of Advertising,

Inc. Both of these sources list real spending.

Advertising expenditure values from 1963 onwards are from the Federal Trade Com-

mission (2013). Starting in this year the FTC began collecting information on cigarette

spending across a variety of media including TV, radio, print and others. In all cases

we net out totals related to price promotion, promotional allowances, and other specific

channels which were added in later years.

We consider a variety of robustness checks to ensure that differences between these

sources do not create artificial variation. Several of the series overlap and the patterns

discussed below remain when we use values for the other series. These overlaps include

United States Department of Commerce (1915) and Nicholls (1951) which both include

data for 1913; Nicholls (1951) and Fujii (1980) which both include data for 1929-1949

(Nicholls’ data are for Reynolds’ total traceable advertising expenditures over 1939-

1949); Fujii (1980) and Schneider et al. (1981) which both include data for 1950-1973;

Schneider et al. (1981) and Federal Trade Commission (2013) which both include data

for 1963-1978. A second check was to include additional company’s advertising spending

during 1914-1928. Nicholls (1951) includes data for American Tobacco for 1925-1928,

and aggregate spending on cigarettes is not sharply changed when the same approach

described earlier is used. Advertising costs for American for 1929-1939 and Ligett &

Myers for 1935-1939 is also available and is used to compare Nicholls (1951) and Fujii

(1980) in the first robustness check. Finally, as a robustness check we compare these

assembled values to other data sources. Borden (1942) includes various measure of

total advertising over 1929-1939 for Camels and for all brands that are comparable to

the values in Nicholls (1951) and Fujii (1980). Tennant (1950) presents several series

that are identical or follow a similar pattern as United States Department of Commerce

(1915) and Nicholls (1951).

Additionally, our assembled time series cigarette advertising expenditure data are

converted into per capita terms using the United States population figures from United

States Census Bureau (2000), United States Census Bureau (2011), and United States Cen-
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sus Bureau (2012). In all cases, terms are converted to year 2000 dollars using Bureau

of Labor Statistics (2013) for 1913 onwards and Sahr (2013) for earlier years.

Figures C2a and C2b depict the resulting time series in levels and per capita terms,

respectively. A few common features are present in both series. There is a run-up in

advertising after the break-up of the Tobacco Trust (i.e., annual spending tripled within

three years) as well as a reduction in advertising during each of the World Wars and

The Depression. There was another steady increase in the post-war period (i.e., annual

spending went up almost eight fold from 1945 to 1967), and then fell starting in 1967

with the FCC’s ruling in that year that the fairness doctrine required anti-smoking ads

on TV and radio and the 1971 ban in ads on those media. Advertising again climbed

in the mid-1970s to the mid-1980s, after which it steadily declined.

C.3 Prices and Cigarette Consumption

Standard price theory suggests that own prices should impact cigarette consumption.

The important distinction is that, as highlighted in the theoretical foundation section,

smoking decisions are inherently dynamic: smoking impacts future health and future

utility (via preferences that capture addiction). The rational addiction literature shows

forward-looking agents alter their smoking behavior based on both current and expected

future cigarette prices (Becker and Murphy (1988); Gruber and Koszegi (2001)). In the

analysis below we focus on contemporaneous prices.

There is a large literature documenting economically and statistically significant

effects of prices (Chaloupka and Warner, 2000). For youth the price elasticity is -0.5

to -1.5, reflecting the responsiveness of smoking initiation (which determines the initial

conditions in our estimation framework). For adults the price elasticity is -0.2 to -0.5,

reflecting responsiveness of quits, relapse, and conditional intensity (captured by the

contemporaneous smoking equations in our estimation framework). These results come

mainly from analyses of recent data. It is noted that our data involve an earlier period

with different technologies (e.g., filtered cigarettes were not introduced until the 1950s)

and social mores with regards to smoking.

For identification purposes, we argue that our price data are exogenous. There are

two main threats to this argument. The first issue is that firms might set prices strate-

gically in response to consumer demand, and such reverse causality will lead to bias.

While tobacco companies have some market power, it is important to remember that

other factors shape consumer prices. The additional factors are federal and state excise

taxes on cigarettes, state sales taxes, and state-imposed price regulations. These factors

change for reasons that are largely exogenous to cigarette demand: the introduction
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Figure C1: Annual Real Aggregate Cigarette Advertising Expenditure

Figure C1a.

Figure C1b.
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and subsequent increases in Massachusetts cigarette excise taxes through at least 1950

were instituted as emergency measures related to budget shortfalls; Massachusetts im-

plemented a minimum cigarette price law in 1945 and over time continued to tinker

with its formula (e.g., the mark-up rate, whether the state excise tax is included, differ-

ential treatment of less expensive brands, differential prices for non-chain stores). We

show in the next subsection that taxes comprise on average half of the consumer price,

and this share varies substantially over time. The minimum price rule makes it difficult

for cigarette manufacturers to set final consumer prices; while the minimum price is

based on wholesale prices, the specific formula continually changes (Annotated Laws of

Massachusetts, 2007).

The second concern is that consumers buy cigarettes in other states that have lower

prices. (There is far more price variation between- rather than within-states due to the

role of state taxes and regulations.) Merriman (2010) shows that large tax differences

lead to substantial cross-border shopping particularly over short distances. If this is

true then observed prices at the state level would not reflect the true price that con-

sumers face, and the extent of the mismeasurement would vary based on the size of

the price differential. In the case of Framingham Massachusetts, the nearby states are

Connecticut, New Hampshire, Rhode Island, and Vermont. For the years 1955-2011

Connecticut and Rhode Island have comparable prices as Massachusetts (Orzechowski

and Walker, 2011), so cross-border shopping is not an issue. New Hampshire and Ver-

mont both have lower prices over at least a portion of this period. Still, it is unlikely

that cross-border shopping was a big issue over much of our sample, due to the rela-

tively high cost of inter-state transportation until at least the 1950s and 1960s. There is

also indirect evidence against cross-state traffic: the price differential grows over time,

so if there is more inter-state purchases then sales between the states should become

more lopsided over time. Per capita sales in New Hampshire and Vermont increased

relative to Massachusetts when the price differential first started to become significant

(i.e., the 1960s for New Hampshire and 1970s for Vermont). But, in the next decade

as the price differential continued to grow, sales stopped shifting to the other states or

even shifted back to Massachusetts.

C.4 Construction of Prices Time Series

This subsection discusses construction of the cigarette price time series for the period

1901-2011. The series is for Massachusetts, the smallest area for which we could collect

prices. (We argue this is reasonable given the relatively small size of Massachusetts).

In all cases prices are per one thousand cigarettes (an industry standard), include all
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state and federal taxes, and are converted to year 2000 dollars using Bureau of La-

bor Statistics (2013) for 1913-2011 and Sahr (2013) for earlier years. We generate

various summary statistics including the unweighted-average, minimum across brands,

and these values exclusive of generics/economy brands. (Generic/economy brands were

prominent for three periods: 1901-1910, 1931-1950 and 1991-2011.)

Prices through 1950 come from a variety of sources that list price at the brand-level

and at the national level. (Taxes and other Massachusetts-specific factors are discussed

below.) Prices for 1901-1911 are from United States Department of Commerce (1915).

Prices are available annually for the principal brands of the American Tobacco Company

(the Tobacco Trust), exclusive of Turkish cigarettes. The principal brands comprised

a majority of sales, with one brand accounting for three-fourths of domestic sales in

the beginning of the period. These are government assembled totals completed in the

wake of the the Supreme Court’s break-up of the Trust in 1911. (No data are available

for 1911 and prices are interpolated for that year). There is also data from this source

for 1912-1913 for the Trust’s successor companies, which is combined with the sources

listed below.

Prices for 1912-1950 are based on Nicholls (1951). This source lists the date and

level of all list price changes for the main brands. The market was quite concentrated

during this period and just the three leading brands (Lucky Strikes, Camel, Chester-

field) accounted for almost all sales until the 1930s and two-thirds of sales through

1950 (Maxwell, various years; Nicholls, 1951). The data include prices for all brands,

including economy/generics, which account for virtually all domestic cigarette sales.

The price level and date of change were checked against Tennant (1950) and there are

only a few and relatively minor discrepancies. Massachusetts cigarette excise taxes (a

per unit tax) were first introduced 11 August 1939 and are added onto these prices.

(Federal excise taxes are included in the list price.)

No data are available for 1951-1954 and interpolation is used. The only change in

taxes during this time was a one cent per pack increase in the federal excise tax on

cigarettes on 01 November 1951.

Data for 1955-2011 are from Orzechowski and Walker (2011), which lists average

retail price by state. Prices are the market share-weighted average of prices of all brands

based on surveyed consumer prices in Massachusetts for fiscal years ending 30 June.

A separate series, which includes generics brands, is included starting in 1991. Prices

include state and federal cigarette excise taxes but do not include sales taxes. Prices

were adjusted to reflect the sales tax after Massachusetts removed the exemption for

cigarettes on 01 July 1988.

Figure C2 graphs the resulting price time series. This figure uses the minimum
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price across brands and omits generics. In our main analysis we focus on the average

price exclusive of generics. The omission of generics is relatively innocuous since for

the years of our main model (1952-1996) the different summary statistics (of prices

with and without generics) are virtually identical (i.e., generic/economy brands were

prominent for three periods — 1901-1910, 1931-1950, and after 1990 — which only

overlap with the very end of our observation period). Figure C2a shows prices over the

century. While they appear relatively stable, note the wide-range of the vertical axis.

(In fact, the post-2000 period is omitted from the graph since prices continue to rise

and this would further obscure the variation.) Prices collapse almost in half after the

dissolution of the Tobacco Trust in 1911. Prices then rise and fall repeatedly during the

1920s , 1930s, and 1940s. Prices then steadily rise for the next two decades, dip again,

and finally increase sharply in the 1990s. Figure C2b shows that, on average, half of

this price is composed of taxes (i.e., state and federal excise taxes on cigarettes as well

as state sales tax). This information is helpful for identification since the tax share is

one of the main sources of variation in prices, and it oscillates for non-demand reasons

(e.g., taxes rise during World War 2 when fiscal demands necessitated the creation of

the state excise tax, initially an emergency measure, and increases in the federal tax).
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Figure C2: Annual Real Cigarette Prices and Taxes

Figure C2a.

Figure C2b.
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D The Role of Unobserved Heterogeneity

While the rich observed lifetime health and smoking heterogeneity of individuals plays

an important role in explaining the mortality rates of individuals with different lifetime

smoking patterns by addressing concern over confounding (using observable data), cor-

related individual UH also plays an important role. Its main function is to capture

the correlation, through unobservables, among the modeled behaviors and outcomes

that would otherwise bias estimated impacts of the smoking and health histories. Our

jointly estimated model allows for UH that is likely to be common across a lifespan

(such as genetics, risk-aversion, time preference or self-esteem, for example) as well as

differences that may vary over time (such as unobserved stress or health, for example).

We model these two types of UH using discretized distributions characterized by mass

point vectors that describe the impact of each type of heterogeneity on the outcomes

of interest. Appendix Table B2 displays the estimated coefficients and standard errors

that capture the distributions. Estimated probability weights of each discrete mass

point vector are listed in the last column.

We use simulation in the paper to evaluate our estimated model. Recall that in

these simulations we replicate, R times, the exogenous characteristics of all individuals

in our estimation sample, N . For each replication, we use the estimated correlated UH

distributions to draw a permanent “type” that is common for that replicated individual

across all time periods and draw, at every time period, a second “type” that may be

different each period. Using the estimated model to simulate lifetime behavior and out-

comes (from an individual’s observed initial age through age 100), we show that lifetime

smoking probabilities differ by these unobserved types. While it is difficult to depict

the differences associated with the time-varying UH, we can condition on (simulated)

permanent UH type and plot the resulting smoking rates by age (Figure D1). We order

the “types” by the simulated smoking probability at age 40 (i.e., highest to lowest).

The distribution of permanent UH suggests that about 14 percent of the sample

(type 1) are as much as 20 percentage points more likely to smoke at any given age

than the other 86 percent. The figure correctly shows that this time-invariant unob-

served determinant of smoking shifts smoking probabilities uniformly, unconditional on

smoking and health histories, at each age.1 Additionally, the model allows for behavior

and outcome shifters each two-year period based on a draw from the distribution cap-

turing time-varying unobservables. A likelihood ratio test comparing the goodness of

1The permanent UH is linearly added to the operand of the linear (OLS) and non-linear (LOGIT
or MLOGIT) operators. For the latter, this does not translate into an intercept shift but also depends
on the level of the product of observed variables and their coefficients.
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Figure D1: Smoking Probabilities by Permanent Unobserved Heterogeneity
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fit of the nested models with and without correlated UH suggests that the model with

such UH fits significantly better.

Using the same ordering based on smoking propensity, we also report the mortality

outcomes for each permanent UH type in Table D1. We see that those individuals with

an UH type that makes them more likely to smoke also experience the shortest lifespan

with an average age of death of 71.8. They also have the highest proportion of cancer

deaths. Types 4 and 6, who are less likely to smoke, have the highest mean (at 75.1

and 74.3, respectively) and percentile ages of death. Type 3 individuals are much more

likely to have a CVD-related death than any of the other types. Finally, note that

type 2 captures individuals with high smoking rates yet longer than average expected

lifetimes.

These variations in behavior and health outcomes are picked up by our modeling of

the correlated UH. While we cannot know specifically what the UH captures, we can

hypothesize its role. One example that we have not previously discussed — an aspect

of behavior that we cannot include explicitly due to data limitations — is smoking

intensity, which may have different impacts on morbidity and mortality outcomes as

well as smoking behavior over the lifetime. The sporadic intensity data that we do

observe suggests that our sample contains relatively heavy smokers with only about
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Table D1: Age and Cause of Death by Permanent Unobserved Heterogeneity

Permanent Simulated Age of death distribution (percentile) Cause of death
UH Type Percent Mean 10th 25th 50th 75th 90th CVD Cancer Other

1 13.9 71.3 57 64 72 79 85 29.3 30.7 40.0
2 29.5 73.6 58 66 75 82 88 35.9 29.6 34.5
3 14.5 72.9 58 66 74 81 87 56.9 16.1 27.0
4 3.3 75.1 62 68 75 82 88 43.5 24.4 32.1
5 3.3 73.8 59 67 75 81 87 43.0 14.9 42.1
6 35.5 74.3 59 67 75 82 88 46.3 24.5 29.1

15 percent of smokers reporting smoking less than a pack of cigarettes a day. The

permanent and time-varying UH that we model potentially addresses the variation in

smoking intensity that our dichotomous smoking indicator “averages over”.

Generally, these conditional (on UH type) death distributions reflect 1.) differences

in lifespan due to unobserved permanent factors (like genetics or time preferences) as

well as 2.) differences in smoking behavior (as illustrated in Figure D1). While we can-

not say exactly what the UH captures, knowing these different smoking and mortality

patterns by type gives us insight into both the estimation results and policy recom-

mendation. First, the (unconditional on type) death distribution would be different if

UH were ignored. (We see this in the biased coefficients of the model without UH.) It

is not simply that inclusion of UH improves precision by reducing important selection,

endogeneity, and measurement error biases, but it allows different lifetime smoking pat-

terns which in turn have non-linear feedback effects (on both health and subsequent

smoking) via the dynamic system of equations. Second, policy evaluation should be

more sensitive to distributional issues knowing there is heterogeneity in the population

in terms of smoking initiation rates, quit rates, relapse rates, and mortality rates. We

find, for example, that some individuals are more predisposed to smoke, but only some

of these have shorter expected life spans.
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