6.4 [15] A particle of mass M in three dimensions has potential $V(X, Y, Z) = \frac{1}{4} A(X^2 + Y^2)^2$.

(a) [6] Show that this Hamiltonian has two continuous symmetries, and that they commute. Call the corresponding eigenvalues m and k. Are there any restrictions on k and m?

First, it is obvious that the potential is independent of Z, and therefore there is a continuous translation symmetry in this direction. Secondly, it is easy to see that rotation about the z-axis leaves the Hamiltonian unchanged. Specifically, define a set of rotated operators

\[
X' = X \cos \theta - Y \sin \theta, \\
Y' = X \sin \theta + Y \cos \theta.
\]

Then if we treat the potential as $V(x, y) = \frac{1}{4} A(x^2 + y^2)^2$, then we have

\[
V(X', Y') = \frac{1}{4} A \left[(X \cos \theta - Y \sin \theta)^2 + (X \sin \theta + Y \cos \theta)^2 \right]^2 \\
= \frac{1}{4} A \left[X^2 \cos^2 \theta - 2XY \cos \theta \sin \theta + Y^2 \sin^2 \theta + X^2 \sin^2 \theta + 2XY \sin \theta \cos \theta + Y^2 \cos^2 \theta \right] \left[X^2 \cos^2 \theta - 2XY \cos \theta \sin \theta + Y^2 \sin^2 \theta + X^2 \sin^2 \theta + 2XY \sin \theta \cos \theta + Y^2 \cos^2 \theta \right] \\
= \frac{1}{4} A \left(X^2 + Y^2 \right)^2 = V(X, Y).
\]

Because we have translation symmetry in the z-direction and rotation about the z-axis, our Hamiltonian will commute with the generators of these groups, P_z and L_z. Our energy eigenstates can also be chosen to be eigenstates of these operators, and we will have

\[
P_z |\phi\rangle = \hbar k |\phi\rangle \quad \text{and} \quad L_z |\phi\rangle = \hbar m |\phi\rangle.
\]

As argued in class, the eigenvalue m is forced to be an integer, though k is unrestricted.

(b) [9] What would be an appropriate set of coordinates for writing the eigenstates of this Hamiltonian? Write the eigenstates as a product of three functions (which I call Z, R, and Φ), and give me the explicit form of two of these functions.

Clearly, z is a good coordinate to use, since our eigenstates of the Hamiltonian are eigenstates of P_z. However, since they are also eigenstates of L_z, it seems like a good idea to change coordinates to cylindrical coordinates (ρ, ϕ, z), which are related to Cartesian coordinates by

\[
\begin{align*}
x &= \rho \cos \phi \\
y &= \rho \sin \phi \\
z &= z
\end{align*}
\]

OR

\[
\begin{align*}
\rho &= \sqrt{x^2 + y^2} \\
\phi &= \tan^{-1}(y/x) \\
z &= z
\end{align*}
\]

If we write our wave function in terms of these coordinates, and assume it factors, we have
\[\psi(\rho, \phi, z) = R(\rho)\Phi(\phi)Z(z) \]

If we demand that this be an eigenstate of \(P_z \) with eigenvalue \(\hbar k \), then we find

\[\hbar kZ(z) = P_zZ(z) = \frac{\hbar}{i} \frac{\partial}{\partial z} Z(z) \quad \text{so that} \quad Z(z) = e^{iz} \cdot \]

Similarly, if we demand that \(\psi(\rho, \phi, z) \) be an eigenstate of \(L_z \) with eigenvalue \(\hbar m \), then we find

\[\hbar m\Phi(\phi) = L_z\Phi(\phi) = \frac{\hbar}{i} \frac{\partial}{\partial \phi} \Phi(\phi) \quad \text{so that} \quad \Phi(\phi) = e^{im\phi} \cdot \]

There is a certain arbitrariness in normalization, and the choices we have made have perhaps not been the best, but up to a constant, we therefore find

\[\psi(\rho, \phi, z) = R(\rho)e^{iz+im\phi} \cdot \]

If we wished, we could now easily write an explicit equation for the radial function \(R \).

Writing the Laplacian that is implicit in the kinetic term in the Hamiltonian in cylindrical coordinates, we find

\[
\begin{aligned}
H\psi &= -\frac{\hbar^2}{2M} \left(\frac{\partial^2 \psi}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \psi}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + \frac{1}{4} A(\rho^2)^2 \psi.
\end{aligned}
\]

Plugging in our explicit form for the wave function, and using Schrödinger’s equation \(H\psi = E\psi \), we have

\[
\begin{aligned}
ER &= -\frac{\hbar^2}{2M} \left(\frac{d^2 R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} \right) + \left[\frac{\hbar^2 k^2}{2M} + \frac{\hbar^2 m^2}{2M \rho^2} + \frac{1}{4} A\rho^4 \right] R.
\end{aligned}
\]