3. [25] Suppose an electron lies in a region with electric and magnetic fields: \(\mathbf{B} = B\hat{z} \) and
\(\mathbf{E} = \frac{m\omega_0^2}{e}x\hat{x} \).

(a) [2] Find the electric potential \(U(x) \) such that
\(\mathbf{E} = -\nabla U(x) \) that could lead to this electric field.

We need the potential to get the derivative in the \(x \)-direction to yield \(-m\omega_0^2x/e \), which tells us that the correct choice is
\(U(x) = -\frac{m\omega_0^2}{2e}x^2 \). This is easily checked.

(b) [3] The magnetic field is independent of translations in all three dimensions. However, the electrostatic potential is independent of translations in only two of those dimensions. Find a vector potential \(\mathbf{A} \) with
\(\mathbf{B} = \nabla \times \mathbf{A} \) which has translation symmetry in the same two directions.

There are always multiple ways to choose to write the vector potential. The electric potential is translation invariant in the \(y \)- and \(z \)-directions, so it makes a lot of sense to try to make our vector potential independent of these two coordinates as well. This means when we write
\(\mathbf{B} = \nabla \times \mathbf{A} \), we’re going to need to get the magnetic field from taking derivatives in the \(x \)-direction. The way the curl works, this will work out if we choose the magnetic field to lie in the \(y \)-direction, and it isn’t hard to see that this works if
\(\mathbf{A} = Bx\hat{y} \).

(c) [4] Write out the Hamiltonian for this system. Eliminate \(B \) in terms of the cyclotron frequency \(\omega_B = eB/m \). What two translation operators commute with this Hamiltonian? What spin operator commutes with this Hamiltonian?

The Hamiltonian is
\[
H = \frac{1}{2m} \left(\mathbf{P} + e\mathbf{A} \right)^2 - eU + \frac{ge}{2m} \mathbf{B} \cdot \mathbf{S} = \frac{1}{2m} \left[P_x^2 + \left(P_y + eBX \right)^2 + P_z^2 \right] + \frac{1}{2} m\omega_0^2 X^2 + \frac{ge}{2m} B S_z \\
= \frac{1}{2m} \left[P_x^2 + \left(P_y + m\omega_B X \right)^2 + P_z^2 \right] + \frac{1}{2} m\omega_0^2 X^2 + \frac{1}{2} g \omega_B S_z
\]

This commutes with \(P_y \), \(P_z \), and \(S_z \). Life is good.

(d) [3] Write your wave function in the form \(\psi(\mathbf{r}) = X(x)Y(y)Z(z)|m_z\rangle \). Based on some of the operators you worked out in part (c), deduce the form of two of the unknown functions.

Since our wave function commutes with \(P_y \) and \(P_z \), we can choose it to be eigenstates of two of these operators, and consequently they will look like
\(Y(y) = e^{ik_y y} \) and
\(Z(z) = e^{ik_z z} \).

These will have eigenvalues \(\hbar k_y \) and \(\hbar k_z \) under these two operators.
(e) [3] Replace the various operators by their eigenvalues in the Hamiltonian. The non-constant terms should be identifiable as a shifted harmonic oscillator.

Replacing the operators by their eigenvalues, the Hamiltonian becomes

$$H = \frac{1}{2m} \left[P_x^2 + \left(\hbar \omega_y + m \omega_y X \right)^2 + \hbar^2 k_z^2 \right] + \frac{1}{2} m \omega_x X^2 + \frac{1}{2} \hbar \hbar \omega_y m_x,$$

$$= \frac{P_x^2}{2m} + \frac{1}{2} m \left(\omega_y^2 + \omega_x^2 \right) X^2 + \hbar \omega_y X + \frac{\hbar^2 k_y^2}{2m} + \frac{\hbar^2 k_z^2}{2m} + \frac{1}{2} \hbar \hbar \omega_y m_x,$$

The last few terms are constants, and the rest is simply a shifted harmonic oscillator.

(f) [4] Make a simple coordinate replacement that shifts it back. If your formulas match mine up to now, they should look like $X = X' - \hbar \omega_y / \left[m \left(\omega_y^2 + \omega_x^2 \right) \right].$

We try the suggested substitution.

$$H = \frac{P_x^2}{2m} + \frac{1}{2} m \left(\omega_y^2 + \omega_x^2 \right) \left[X' - \frac{\hbar \omega_y}{m \left(\omega_y^2 + \omega_x^2 \right)} \right]^2 + \hbar \omega_y \left[X' - \frac{\hbar \omega_y}{m \left(\omega_y^2 + \omega_x^2 \right)} \right] + \frac{\hbar^2 (k_y^2 + k_z^2)}{2m},$$

$$= \frac{P_x^2}{2m} + \frac{1}{2} m \left(\omega_y^2 + \omega_x^2 \right) X'^2 - \frac{\hbar^2 k_y^2 \omega_x^2}{2m \left(\omega_y^2 + \omega_x^2 \right)} + \frac{\hbar^2 k_x^2}{2m} + \frac{\hbar^2 k_z^2}{2m} + \frac{1}{2} \hbar \hbar \omega_y m_x.$$

(g) [3] Find the energies of the Hamiltonian

The first two terms are simply a Harmonic oscillator, now not shifted, and the energies are just $\hbar \omega \left(n + \frac{1}{2} \right),$ where $\omega = \sqrt{\omega_y^2 + \omega_x^2}.$ Therefore the energies are in total

$$E = \hbar \omega \left(n + \frac{1}{2} \right) + \frac{\hbar^2 k_y^2}{2m} + \frac{\hbar^2 k_x^2 \omega_x^2}{2m \left(\omega_y^2 + \omega_x^2 \right)} + \frac{1}{2} \hbar \hbar \omega_y m_x.$$

(h) [3] Check that they give sensible answers in the two limits when there is no electric field (pure Landau levels) or no magnetic fields (pure harmonic oscillator plus y- and z-motion).

If there are no electric fields, then $\omega_y = 0,$ and we have

$$E = \hbar^2 k_y^2 / 2m + \hbar \omega_y \left(n + \frac{1}{2} + \frac{1}{2} \hbar \hbar m_x \right).$$ This is exactly what we would expect. If there are no magnetic fields, then $\omega_x = 0,$ and we have $E = \hbar \omega_y \left(n + \frac{1}{2} \right) + \hbar^2 \left(k_z^2 + k_y^2 \right) / 2m,$ which is a harmonic oscillator added to motion in the y- and z-direction.