1. Consider the wave function \(\psi(x) = \begin{cases} Nx(a-x) & 0 < x < a, \\ 0 & \text{otherwise.} \end{cases} \)

Once properly normalized, this wave function has \(\langle X \rangle = \frac{1}{2}a \) and \(\langle X^2 \rangle = \frac{7}{8}a^2 \).

(a) [5] What is the correct normalization \(N \)?

We insist that the normalization integral yields one, so we have
\[
1 = \int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = N^2 \int_0^a \left[x(a-x) \right]^2 \, dx = N^2 \int_0^a \left(a^2 x^2 - 2ax^3 + x^4 \right) \, dx \\
= N^2 \left(\frac{1}{4} a^2 x^3 - \frac{1}{2} ax^4 + \frac{1}{2} x^5 \right)_0^a = N^2 a^5 \left(\frac{1}{3} - \frac{1}{4} + \frac{1}{5} \right) = \frac{1}{30} N^2 a^5, \\
N = \sqrt{\frac{30}{a^5}}.
\]

(b) [8] What are \(\langle P \rangle \) and \(\langle P^2 \rangle \) for this state?

We simply insert the operator \(P = -i \frac{d}{dx} \) to find
\[
\langle P \rangle = -i \hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{d}{dx} \psi(x) \, dx = N^2 \int_0^a \left[x(a-x) \right] \frac{d}{dx} \left[x(a-x) \right] \, dx \\
= -i \hbar \frac{30}{a^3} \int_0^a (ax-x^2)(a-2x) \, dx = -i \hbar \frac{30}{a^3} \int_0^a \left(a^2 x^3 - 3ax^2 + 2x^4 \right) \, dx \\
= -i \hbar \frac{30}{a^3} \left(\frac{1}{2} a^2 x^2 - ax^3 + \frac{1}{2} x^4 \right)_0^a = -i \hbar \frac{30}{a} \left(\frac{1}{2} - 1 + \frac{1}{2} \right) = 0,
\]
\[
\langle P^2 \rangle = -\hbar^2 \int_{-\infty}^{\infty} \psi^*(x) \frac{d^2}{dx^2} \psi(x) \, dx = -\hbar^2 \frac{30}{a^3} \int_0^a \left[x(a-x) \right] \frac{d^2}{dx^2} \left[x(a-x) \right] \, dx \\
= -60 \hbar^2 \frac{a}{a^3} \int_0^a (ax-x^2) \, dx = \frac{60}{a^5} \left(\frac{1}{2} ax^2 - \frac{1}{2} x^3 \right)_0^a = \frac{60}{a^5} \left(\frac{1}{2} - \frac{1}{4} \right) = \frac{10}{a^2} \hbar^2.
\]

(c) [7] Find the uncertainties \(\Delta x \) and \(\Delta p \) and show that they satisfy the uncertainty relation.

\[
\Delta x = \sqrt{\langle X^2 \rangle - \langle X \rangle^2} = \sqrt{\frac{7}{8}a^2 - \left(\frac{1}{2}a \right)^2} = a \sqrt{\frac{7}{8} - \frac{1}{4}} = a \sqrt{\frac{3}{8}} = \frac{a \sqrt{6}}{28},
\]
\[
\Delta p = \sqrt{\langle P^2 \rangle - \langle P \rangle^2} = \sqrt{\frac{10 a^2 \hbar^2}{a^2} - 0^2} = \frac{\sqrt{10} \hbar}{a}.
\]

This yields \((\Delta x)(\Delta p) = \sqrt{\frac{15}{4}} \hbar = 0.578 \hbar > \frac{1}{2} \hbar \).
2. A particle of mass \(m\) lies in the infinite square well with allowed region \(0 < x < a\). The wave function takes the form \(\psi(x) = \begin{cases} N \sin^2\left(\frac{\pi x}{a}\right) & 0 < x < a, \\ 0 & \text{elsewhere}. \end{cases} \)

(a) [5] Determine the normalization constant \(N\).

With the help of the helpful integrals, we have

\[
1 = \int_{-\infty}^{\infty} |\psi(x)|^2 \, dx = N^2 \int_{0}^{a} \sin^4\left(\frac{\pi x}{a}\right) \, dx = N^2 \int_{0}^{a} \sin^2\left(\frac{\pi x}{a}\right) \sin^2\left(\frac{\pi x}{a}\right) \, dx = \frac{3}{4} N^2 a, \\
N = \sqrt{8/3a}.
\]

(b) [7] Write this state in the form \(|\psi\rangle = \sum_n c_n |\phi_n\rangle\), where \(|\phi_n\rangle\) are the energy eigenstates. Some helpful integrals are provided.

The normalized energy eigenstates and eigenvalues are given by

\[
\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right), \quad E_n = \frac{\pi^2 n^2 h^2}{2ma^2}.
\]

The overlaps \(c_n\) are given by

\[
c_n = \langle \phi_n | \psi \rangle = \sqrt{\frac{2}{3a}} \int_{-a}^{a} \sin\left(\frac{\pi nx}{a}\right) \sin\left(\frac{\pi x}{a}\right) \, dx = \frac{4 \cdot (1)^2 a}{\sqrt{3a \pi n} (4 - n^2)} \quad \text{if } n \text{ odd, zero otherwise.}
\]

Simplifying and substituting into the sum, we have

\[
|\psi\rangle = \sum_{n \text{ odd}} \frac{16}{\pi n \sqrt{3} (4 - n^2)} |\phi_n\rangle.
\]

(c) [8] If we were to measure the energy, what would be the possible outcomes and corresponding probabilities? Give a general formula, and find the numeric value as a percentage for the first three non-zero outcomes.

The energies were given above, namely \(E_n = \frac{\pi^2 n^2 h^2}{2ma^2}\), but the probability vanishes unless \(n\) is odd. For \(n\) odd, we have

\[
P(n) = |\langle \phi_n | \psi \rangle|^2 = |c_n|^2 = \frac{256}{3\pi^2 n^2 \left(n^2 - 4\right)^2}.
\]

The table at right gives the resulting probabilities for the first three non-zero cases. Note that the probabilities add to 99.99%. They should total one, which doubtless just represents the contribution from larger \(n\).
3. Consider the harmonic oscillator with mass \(m\) and angular frequency \(\omega\). At \(t = 0\), the system is in the state \(|\Psi(t = 0)\rangle = N \sum_{n=1}^{\infty} \frac{i^n}{n^2} |n\rangle\).

(a) [7] What is the correct normalization \(N\)? Some helpful sums are given on the next page.

We need to have

\[
1 = \langle \Psi | \Psi \rangle = N^2 \sum_{p=1}^{\infty} \frac{(-i)^p}{p^2} \langle p | \sum_{n=1}^{\infty} \frac{i^n}{n^2} |n\rangle = N^2 \sum_{p=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-i)^p}{p^2 n^2} \delta_{np} = N^2 \sum_{n=1}^{\infty} \frac{1}{n^4} = N^2 \zeta(4) = \frac{\pi^4 N^2}{90},
\]

\[
N = \sqrt{\frac{90}{\pi^2}}.
\]

(b) [5] Find the value of \(\langle P \rangle\) for this state. Simplify as much as possible.

We write the operators in terms of raising and lowering operators, so we have

\[
\langle P \rangle = \langle \Psi | P | \Psi \rangle = \frac{90}{\pi^4} i \sqrt{\frac{1}{2 \hbar \omega}} \left[\sum_{p=1}^{\infty} \frac{(-i)^p}{p^2} \langle p | \sum_{n=1}^{\infty} \frac{i^n}{n^2} |n\rangle \left(a^\dagger - a \right) \left[\sum_{n=1}^{\infty} \frac{i^n}{n^2} |n\rangle \right] \right]
\]

\[
= \frac{45}{\pi^4} i \sqrt{2 \hbar \omega} \left[\sum_{p=1}^{\infty} \frac{(-i)^p}{p^2} \langle p | \sum_{n=1}^{\infty} \frac{i^n}{n^2} \left(\sqrt{n+1} |n+1\rangle - \sqrt{n} |n-1\rangle \right) \right]
\]

The smart way to simplify this is to use the delta function to do the \(p\)-sum on the first term and to do the \(n\) – sum on the second term. Then we have

\[
\langle P \rangle = \frac{45}{\pi^4} i \sqrt{2 \hbar \omega} \left[\sum_{n=1}^{\infty} \frac{i^n}{n^2 (n+1)^2} \sqrt{n+1} - \sum_{p=1}^{\infty} \frac{i^{p+1}}{p^2 (p+1)^2} \sqrt{p+1} \right]
\]

\[
= \frac{45}{\pi^4} \sqrt{2 \hbar \omega} \left[\sum_{n=1}^{\infty} \frac{1}{n^2 (n+1)^2} + \sum_{p=1}^{\infty} \frac{1}{p^2 (p+1)^2} \right] = \frac{90}{\pi^4} \sqrt{2 \hbar \omega} \sum_{n=1}^{\infty} \frac{1}{n^2 (n+1)^2}.
\]

Other than numerically, I don’t know of any way to simplify this further.

(c) [8] What is \(|\Psi(t)\rangle\) at all times?

Each of the eigenstates has energy \(E_n = \hbar \omega \left(n + \frac{1}{2} \right)\), so when we include time-dependance, they simply pick up a factor of \(\exp(-i E_n t / \hbar) = \exp\left[-i \left(n + \frac{1}{2} \right) \omega t \right]\). So the time state vector is

\[
|\Psi(t)\rangle = \sum_{n=1}^{\infty} c_n e^{-i \left(n + \frac{1}{2} \right) \omega t} |n\rangle = \frac{3 \sqrt{10}}{\pi^2} \sum_{n=1}^{\infty} \frac{i^n}{n^2} e^{-i \left(n + \frac{1}{2} \right) \omega t} |n\rangle.
\]
4. A hydrogen atom is in the state \(|n,l,m\rangle = |2,1,0\rangle \).

(a) [6] What would be the result if you measure the energy, orbital angular momentum squared \(L^2 \) and \(z \)-component \(L_z \)?

Because we are in an eigenstate of all three quantities, the three requested quantities are given by

\[
E = -\frac{13.6 \text{ eV}}{n^2} = -\frac{13.6 \text{ eV}}{2^2} = -3.40 \text{ eV},
\]

\[
L^2 = \hbar^2 (l^2 + l) = \hbar^2 (1^2 + 1) = 2\hbar^2,
\]

\[L_z = \hbar m = 0.\]

(b) [6] Write the explicit form of the wave function \(\psi(r,\theta,\phi) \).

We simply write it down using

\[
\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_l^m(\theta,\phi) = R_{21}(r)Y_1^0(\theta,\phi) = \frac{r e^{-r/2a}}{2\sqrt{6a^2}} \frac{\sqrt{3}}{2\sqrt{\pi}} \cos \theta = \frac{r e^{-r/2a}}{4\sqrt{2\pi a^5}} \cos \theta.
\]

(c) [8] Calculate the expectation value \(\langle R^{-1} \rangle \) for this wave function, where \(R \) is the distance from the origin operator.

We can save some steps using the fact that the spherical harmonics are orthonormal when integrated over angles, so we have

\[
\langle R^{-1} \rangle = \int \psi_{210}^*(r) r^{-1} \psi_{210}(r) d^3r = \int_0^\infty \left[R_{21}(r) \right]^2 r^2 r^{-1} dr \int Y_1^0(\theta,\phi)^* Y_1^0(\theta,\phi) d\Omega
\]

\[
= \int_0^\infty \left[\frac{r e^{-r/2a}}{2\sqrt{6a^5}} \right]^2 r dr = \frac{1}{24a^2} \int_0^\infty r^3 e^{-r/a} dr = \frac{1}{24a^5} a^4 3! = \frac{1}{4a}.
\]
5. In a certain basis, the state vector is given by $|\Psi\rangle = \left(\frac{1}{2} + \frac{2}{3}i\right)$, and the spin operator in the x-directions is given by $S_x = \frac{1}{2} \hbar \sigma_x = \frac{1}{2} \hbar \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

(a) [10] Find the eigenvalues and normalized eigenvectors of S_x.

We first find the eigenvalues and eigenvectors of the Pauli matrix σ_x, which are found from

$$0 = \det (\sigma_x - \lambda 1) = \det \begin{pmatrix} 0 - \lambda & 1 \\ 1 & \lambda \end{pmatrix} = \lambda^2 - 1,$$

$$\lambda = \pm 1.$$

The eigenvalues for S_x will then be $\pm \frac{1}{2} \hbar$. We can then find the eigenvectors by giving them arbitrary components, and solving the eigenvector equation, so we have

$$\pm \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}, \quad \text{so} \quad \beta = \pm \alpha, \quad \left| \pm \frac{1}{2} \hbar \right\rangle = \begin{pmatrix} \alpha \\ \pm \alpha \end{pmatrix}.$$

Normalizing them, we find $2\alpha^2 = 1$, so $\alpha = 1/\sqrt{2}$, and we have

$$\pm \frac{1}{2} \hbar \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}.$$

(b) [10] If you measured S_x, what is the probability that you get each of the possible eigenvalues you found in part (a)? What would be the state vector afterwards?

The probabilities are given by

$$P(\pm \frac{1}{2} \hbar) = \langle \pm \frac{1}{2} \hbar | \Psi \rangle^2 = \frac{1}{2} \left| 1 - 1 \left(\frac{1}{2} + \frac{2}{3} i \right) \right|^2 = \frac{1}{2} \left[1 + \left(\frac{1}{2} \right)^2 \right] = \frac{13}{18},$$

$$P(-\frac{1}{2} \hbar) = \langle -\frac{1}{2} \hbar | \Psi \rangle^2 = \frac{1}{2} \left| 1 - 1 \left(\frac{1}{2} + \frac{2}{3} i \right) \right|^2 = \frac{1}{2} \left[1 + \left(\frac{1}{2} \right)^2 \right] = \frac{13}{18}.$$

Since there are no states with degenerate eigenvalues, you must (up to a phase) end up in these eigenstates, so in the first case you will end up in the state $\left| \pm \frac{1}{2} \hbar \right\rangle$ and in the latter case $\left| -\frac{1}{2} \hbar \right\rangle$.
Possibly Helpful Formulas:

<table>
<thead>
<tr>
<th>Harmonic Oscillator</th>
<th>Radial Wave Functions</th>
<th>Spherical Harmonics</th>
<th>Hydrogen Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = \sqrt{\frac{\hbar}{2m\omega}} (a + a^\dagger)$</td>
<td>$R_{10}(r) = \frac{2e^{-r/\alpha}}{\sqrt{\alpha^2}}$</td>
<td>$Y_0^0(\theta, \phi) = \frac{\sqrt{3}}{2\sqrt{\pi}} \cos \theta$</td>
<td>$E = -\frac{13.6 \text{ eV}}{n^2}$</td>
</tr>
<tr>
<td>$P = i\sqrt{\frac{\hbar}{2m\omega}} (a^\dagger - a)$</td>
<td>$R_{20}(r) = \frac{e^{-r/\alpha}}{\sqrt{2\alpha}} \left(1 - \frac{r}{2\alpha}\right)$</td>
<td>$Y_2^0(\theta, \phi) = \frac{\sqrt{5}}{4\sqrt{\pi}} (3\cos^2 \theta - 1)$</td>
<td></td>
</tr>
<tr>
<td>$a</td>
<td>n \rangle = \sqrt{n}</td>
<td>n - 1 \rangle$</td>
<td>$R_{21}(r) = \frac{re^{-r/\alpha}}{2\sqrt{6\alpha^2}}$</td>
</tr>
<tr>
<td>$a^\dagger</td>
<td>n \rangle = \sqrt{n+1}</td>
<td>n + 1 \rangle$</td>
<td></td>
</tr>
</tbody>
</table>

Possibly Helpful Integrals:

Definite Integrals: n and p are assumed to be positive integers

\[
\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}},
\]

\[
\int_0^a \sin \left(\frac{\pi nx}{a}\right) dx = \begin{cases} \frac{2a}{\pi} & \text{if } n \text{ odd}, \\ 0 & \text{if } n \text{ even}. \end{cases}
\]

\[
\int_0^a \sin^2 \left(\frac{\pi nx}{a}\right) dx = \begin{cases} \frac{4p^2_a}{\pi(n^4 p^4 - n^2)} & \text{if } n \text{ odd}, \\ 0 & \text{if } n \text{ even}. \end{cases}
\]

\[
\int_0^a \sin^2 \left(\frac{\pi nx}{a}\right) \sin^2 \left(\frac{\pi px}{a}\right) dx = a \left(\frac{1}{4} + \frac{1}{8} \delta_{np}\right).
\]

Possibly helpful sums:

\[
\sum_{n=1}^{\infty} \frac{1}{n^k} = \zeta(k), \quad \sum_{n=1}^{\infty} \frac{(-1)^k}{n^k} = (2^{1-k} - 1)\zeta(k), \quad \zeta(2) = \frac{\pi^2}{6}, \quad \zeta(4) = \frac{\pi^4}{90}, \quad \zeta(6) = \frac{\pi^6}{945}.
\]