Lecture 4: Tangents and Limits

Tangent line: The tangent line passing through a point \((x_0, f(x_0))\) lying on the graph of a function \(f(x)\) "touche"s \((x_0, f(x_0))\).

Example:
Find an equation of the tangent line to the function \(f(x) = x^3\) at \((1, 1)\).

Solution:
The idea is to generate a sequence of approximations that get better and better.

\[
\begin{align*}
\frac{f(1 + h) - f(1)}{h} & = \text{rise} = \frac{8 - 1}{1} = 7 \\
\frac{f(1 + \frac{1}{2}) - f(1)}{\frac{1}{2}} & = \text{rise} = \frac{\frac{27}{8} - 1}{\frac{1}{2}} = 4.75 \\
\frac{f(1 + \frac{1}{4}) - f(1)}{\frac{1}{4}} & = \text{rise} = \frac{\frac{125}{16} - 1}{\frac{1}{4}} = 61 = 3.81 \\
\frac{f(1 + \frac{1}{16}) - f(1)}{\frac{1}{16}} & = \text{rise} = \frac{1}{1} = 1
\end{align*}
\]
Let's make a new function which gives slope of secant lines:

\[g(h) = \frac{f(1+h) - f(1)}{h} = \frac{\text{rise}}{\text{run}} \]

\[= \frac{(1+h)^3 - 1}{h} \]

\[= \frac{x^3 + 3hx^2 + 3h^2x - x^3}{h} \]

\[= 3 + h + h^2 \]

As \(h \) goes to zero it follows that:

\[\lim_{h \to 0} g(h) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = 3 = \text{slope at tangent line.} \]

However, \(g(0) = \frac{f(1+0) - f(1)}{0} = \frac{0}{0} \) (Undefined).

\[\Rightarrow y - 1 = 3(x-1) \]

\[\Rightarrow y = 3(x-1) + 1 \text{ Equation of tangent line.} \]
Limit Suppose \(f(x) \) is defined when \(x \) is near a number \(a \). Then we write
\[
\lim_{{x \to a}} f(x) = L
\]
if \(f(x) \) gets arbitrarily close to \(L \) by restricting \(x \) to be sufficiently close to \(a \).

Example:
1. \(\lim_{{x \to 2}} 3x^2 = 3 \cdot 8 = 24 \)
2. \(\lim_{{x \to 3}} \frac{x^2 - 9}{x - 3} \), "dumb" thing \(\frac{3^2 - 9}{3 - 3} = \frac{0}{0} \rightarrow \text{Undefined} \)

 \[
 \lim_{{x \to 3}} (x-3)(x+3) = \lim_{{x \to 3}} x + 3 = 6.
 \]
3. \(\lim_{{x \to 0}} \frac{\sqrt{x^2 + 9} - 3}{x^2} \), "dumb" thing \(\frac{\sqrt{9} - 3}{0} = \frac{0}{0} \rightarrow \text{Undefined}! \)

 \[
 \lim_{{x \to 0}} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \lim_{{x \to 0}} \frac{x^2 + 9 - 9}{x^2 (\sqrt{x^2 + 9} + 3)} = \lim_{{x \to 0}} \frac{1}{\sqrt{x^2 + 9} + 3} = \frac{1}{6}.
 \]
Velocity:

The distance of an object in free fall is given by:

\[d(t) = 4.9 t^2 \] (meters).

How fast is the object falling after 2 seconds?

\[\text{rate} \times \text{time} = \text{distance} \]

\[\Rightarrow \text{rate} = \frac{\text{distance}}{\text{time}} \]

<table>
<thead>
<tr>
<th>Interval of time</th>
<th>distance</th>
<th>Average Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \leq t \leq 3)</td>
<td>(d(3) - d(2) = 21.5)</td>
<td>(2.5/1 = 24.5 \text{ m/s})</td>
</tr>
<tr>
<td>(2 \leq t \leq 2.1)</td>
<td>2.009</td>
<td>20.09 m/s</td>
</tr>
<tr>
<td>(2 \leq t \leq 2.01)</td>
<td>0.196</td>
<td>19.649</td>
</tr>
<tr>
<td>(2 \leq t \leq 2.001)</td>
<td>0.0196</td>
<td>19.6609</td>
</tr>
</tbody>
</table>

Instantaneous Velocity \(\approx 19.6 \text{ m/s}\).

The exact result is:

\[v(2) = \lim_{\Delta t \to 0} \frac{d(2 + \Delta t) - d(2)}{\Delta t} \]

\[= \lim_{\Delta t \to 0} \frac{4.9(2 + \Delta t)^2 - 4.9 \cdot 2^2}{\Delta t} \]

\[= \lim_{\Delta t \to 0} \frac{4.9(4 + 2\Delta t + \Delta t^2) - 4.9 \cdot 4}{\Delta t} \]

\[= \lim_{\Delta t \to 0} \frac{9.8 \cdot 2 + 4.9 \Delta}{\Delta} = 19.6 \text{ m/s}. \]
Harder Limits:

1. What is \(\lim_{{x \to 0}} \frac{1 - \cos(x)}{x} ? \)

"Dunh" thing: \(1 - \cos(0) = 0 \), undefined, do more work!!

\[
\begin{array}{c|c}
 x & \frac{1 - \cos(x)}{x} \\
-0.005 & -0.1 \\
0.005 & 0.1 \\
-0.0499583 & -1 \\
0.0499583 & 1 \\
-0.45968 & -1 \\
0.45968 & 1 \\
\end{array}
\]

\[
\lim_{{x \to 0}} \frac{1 - \cos(x)}{x} = 0
\]

\[
\lim_{{x \to \pi}} \frac{1 - \cos(x)}{x} = \frac{2}{\pi}
\]

\[
\lim_{{x \to 2\pi}} \frac{1 - \cos(x)}{x} = 0
\]

2. \(\lim_{{x \to 0}} \sin \left(\frac{1}{x} \right) = \text{Does not exist.} \)

\[
\Rightarrow \text{Infinite \# \ of \ zeros \ in \ } [-1, 1] \]
One Sided Limits: We write
\[\lim_{x \to a^-} f(x) = L \quad \text{or} \quad \lim_{x \to a^+} f(x) = L \]
and say the **left-hand limit** (or right-hand limit) as \(x \) approaches \(a \) is equal to \(L \) if \(f(x) \)
gets arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) with \(x \) less (greater) than \(a \).

Example:

\[f(x) \]

\[\begin{array}{c}
\text{Graph showing limit values.}
\end{array} \]

\[\lim_{x \to -2^-} f(x) = 3, \quad \lim_{x \to 2^-} f(x) \text{ does not exist} \]

\[\lim_{x \to 1} f(x) = 2, \quad \lim_{x \to 2^+} f(x) = \frac{3}{2} \]

\[\lim_{x \to 2^+} f(x) = 4 \]

Theorem:
\[\lim_{x \to a^-} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^+} f(x) = L \]
Infinite Limits:

\[\lim_{x \to a} f(x) = \infty \quad \text{or} \quad \lim_{x \to a} f(x) = -\infty \]

means the values of \(f(x) \) can be made arbitrarily large (or arbitrarily large negative) by taking \(x \) sufficiently close to \(a \).