Thermodynamics and Statistical Mechanics Qualifying Exam
June 12, 2014

Please work 4 of the following 6 questions. If you answer more than four you must clearly mark which four you want to have graded.

1. Think of the internal energy E and the entropy S as functions of the temperature T and the volume V of a system. The number of particles is fixed.

 a. For a quasi-static or reversible process rigorously show that

 \[
 \left(\frac{\partial E}{\partial T} \right)_V \left(T \frac{\partial S}{\partial T} \right)_V
 \]

 b. For a quasistatic or reversible process find a similar expression for

 \[
 \left(\frac{\partial E}{\partial V} \right)_T
 \]

 Again provide a rigorous derivation of your result.

 c. Use the results of parts (a) and (b) to derive one of the Maxwell relations.

2. If you have a system in equilibrium with both a heat and a pressure bath so that the variables that specify a macrostate of the system are T, P, and N, then the probability for a given microstate s is

 \[
 P_s = \frac{e^{-\beta(E_s+PV_s)}}{Z}
 \]

 Here E_s is the energy of the system and V_s is the volume of the system in microstate s. P is the pressure of the system and Z is the partition function, and $\beta = 1/(kT)$. The Gibbs free energy in this case is taken to be

 \[
 G = -kT \ln Z
 \]

 a. Derive an expression for Z. You must show your work for full credit. Hint: This is not a long calculation.

 b. Find expressions for the average volume \bar{V} and the average energy \bar{E}.

 c. Using the fact that in classical thermodynamics $G = E - TS + PV$, derive an expression for the entropy S in terms of k, T, Z, and one or more derivatives of Z.

 d. Using your result for part (c) verify that the formula $S = -k \sum_s P_s \ln P_s$ is correct.
3. The diagram above shows a plot of the temperature (T) versus entropy (S) for a cyclic 3 step process of an ideal gas of N monoatomic particles. Your answers to the following questions can be expressed in terms of the values of temperature (T_1, T_2, T_3) and entropy (S_1 and S_2).

(a) Find the heat added to or subtracted from the system for each of the steps – Q_{AB}, Q_{BC}, and Q_{CA}.

(b) Find the magnitude of the net work $|W|$ done on the system.

(c) Find the total amount of the heat Q_{in} that is added to the system.

(d) Find the efficiency of each cycle

\[
\epsilon = \frac{|W|}{Q_{in}}
\]

(e) For a Carnot cycle operating between the same maximum and minimum temperatures and the same maximum and minimum entropies, find the corresponding efficiency ϵ_{Carnot}. Comment on the value of ϵ_{Carnot} relative to ϵ.
4. Consider a system of 3 identical non-interacting particles each having two possible total (kinetic, potential, etc.) energies: ϵ_1 and ϵ_2 with $\epsilon_2 > \epsilon_1$. Assume that the particles are in equilibrium with a heat bath held at temperature T.

(a) Suppose that the 3 particles are indistinguishable particles obeying Fermi statistics and each has a spin with possible (degenerate) states \uparrow and \downarrow.
 i. Write the canonical partition function for this case as a function of the temperature T.
 ii. Evaluate the average internal energy of the system for $T \to 0$.
 iii. Evaluate the average internal energy of the system for $T \to \infty$.

(b) Suppose that the 3 particles are indistinguishable particles obeying Bose statistics and each has no internal spin.
 i. Write the canonical partition function for this case as a function of the temperature T.
 ii. Evaluate the average internal energy of the system for $T \to 0$.
 iii. Evaluate the average internal energy of the system for $T \to \infty$.

(c) Suppose that the 3 particles are distinguishable particles obeying Boltzmann statistics and each has no internal spin.
 i. Write the canonical partition function for this case as a function of the temperature T.
 ii. Evaluate the average internal energy of the system for $T \to 0$.
 iii. Evaluate the average internal energy of the system for $T \to \infty$.
5. Consider a one-dimensional chain on a two-dimensional flat surface composed of $N \gg 1$ sites. Each site has one of two energy states: it can be straight (with energy $h_{\text{bend}} = 0$) or it can bend by 90° (on the right or on the left) with energy $h_{\text{bend}} = \epsilon > 0$, independently of the bending direction. Compute the entropy of the system, $S(E, N)$, for a fixed total bending energy $E = m\epsilon$ (m is an integer number such that $m \gg 1$). Also, determine the internal energy as a function of the temperature and the resulting heat capacity C_N, under the assumption that $(Nm) \gg 1$. Finally, determine the behaviour of the internal energy in the limits of low and high temperatures.

6. A simple model of DNA consists of two filaments intersecting one with each other so as to form a double helix. However, the geometry of the double helix is not important for this problem. Let the system be at a fixed temperature T and label the two filaments (a, b). On each filament there are N sites, each of which contains a molecular fragment. The molecular fragment on a given site of strand a can only form a bond with the molecular fragment at the same site on strand b. There is only one way that this can occur. However, if at a particular site the molecular fragment on strand a does not form a bond with the corresponding molecular fragment on strand b then the energy of the system is larger by an amount $\epsilon > 0$ than it would be if there was a bond. Further, if no bond is formed then the molecular fragment on strand a has G directions that it can point in, all with the same energy. The same is true for the molecular fragment on strand b.

The system presents various configurations, including the configuration for which all sites have bonds, and configurations with any number p of sites with no bonds, up to $N - 1$. At least one site must have a bond. Write down the canonical partition function and determine the average number of sites without bonds $\langle p \rangle$. Is there a critical temperature T_c above which the canonical ensemble gives a divergent partition function for large N? Hint: Defining the quantity $x = G^2e^{-\beta\epsilon}$ will make the computations easier.