\mathbb{Z}-graded noncommutative projective geometry

Algebra Seminar

Robert Won
University of California, San Diego
Overview

1 Preliminaries
 Pre-talk catchup
 Noncommutative things

2 Noncommutative projective schemes

3 \(\mathbb{Z} \)-graded rings
 Prior work
 Generalized Weyl algebras

4 Future direction

UC San Diego
What you missed in the pre-talk

- Throughout, $\mathbb{k} = \bar{\mathbb{k}}$, $\text{char}(\mathbb{k}) = 0$
- Γ an abelian group
- A Γ-graded \mathbb{k}-algebra A has \mathbb{k}-space decomposition
 \[A = \bigoplus_{\gamma \in \Gamma} A_{\gamma} \]
 such that $A_\gamma A_\delta \subseteq A_{\gamma + \delta}$
- A graded right A-module M:
 \[M = \bigoplus_{\gamma \in \Gamma} M_\gamma \]
 such that $M_\gamma \cdot A_\delta \subseteq M_{\gamma + \delta}$
What you missed in the pre-talk

- \(A \) graded by \(\mathbb{N} \) (or \(\mathbb{Z} \)), the graded module category \(\text{gr-}A \):
- Objects: finitely generated graded right \(A \)-modules
- Hom sets (degree 0) graded module homomorphisms:

\[
\text{hom}_{\text{gr-}A}(M, N) = \{ f \in \text{Hom}_{\text{mod-}A}(M, N) \mid f(M_i) \subseteq N_i \}
\]

- The shift functor:

\[
S^i : \text{gr-}A \rightarrow \text{gr-}A
\]

\[
M \mapsto M \langle i \rangle
\]

<table>
<thead>
<tr>
<th></th>
<th>−3</th>
<th>−2</th>
<th>−1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>(M_{−3})</td>
<td>(M_{−2})</td>
<td>(M_{−1})</td>
<td>(M_0)</td>
<td>(M_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M\langle 1 \rangle)</td>
<td>(M_{−3})</td>
<td>(M_{−2})</td>
<td>(M_{−1})</td>
<td>(M_0)</td>
<td>(M_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M\langle 2 \rangle)</td>
<td>(M_{−3})</td>
<td>(M_{−2})</td>
<td>(M_{−1})</td>
<td>(M_0)</td>
<td>(M_1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Picard group

- For a category of graded modules (e.g. $\text{gr}-A$) we define the **Picard group**, $\text{Pic}(\text{gr}-A)$ to be the group of autoequivalences of $\text{gr}-A$ modulo natural isomorphism.

- (If R is a commutative k-algebra, $\text{Pic}(\text{mod}-R) \cong \text{Pic}(R)$, the isomorphism classes of invertible unitary R-bimodules)

- For a noncommutative ring, A, $\text{Pic}(\text{gr}-A)$ can be nonabelian.
Morita equivalence

- Two rings R and S are called **Morita equivalent** if $\text{mod-}R$ is equivalent to $\text{mod-}S$ (if and only if $\text{R-mod equivalent to S-mod}$).
- For R and S commutative, then R is Morita equivalent to S if and only if $R \cong S$.

Example

R a ring, then $M_n(R)$ (the ring of $n \times n$ matrices) is Morita equivalent to R.

- R and S are **graded Morita equivalent** if gr-R is equivalent to gr-S.
Noncommutative is not commutative

- Commutative graded ring: $R \leftrightarrow \text{Proj } R$
- Noncommutative ring: not enough (prime) ideals

<table>
<thead>
<tr>
<th>The Weyl algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{k}\langle x, y \rangle / (xy - yx - 1)$</td>
</tr>
<tr>
<td>is a noncommutative analogue of $\mathbb{k}[x, y]$ but is simple.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The quantum polynomial ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>The \mathbb{N}-graded ring</td>
</tr>
<tr>
<td>$\mathbb{k}\langle x, y \rangle / (xy - qyx)$</td>
</tr>
<tr>
<td>is a “noncommutative \mathbb{P}^1” but for $q^n \neq 1$ has only four homogeneous prime ideals (namely $(0), (x), (y), \text{ and } (x, y)$).</td>
</tr>
</tbody>
</table>
Sheaves to the rescue

• The Beatles (paraphrased):

 “All you need is sheaves.”

• Idea: You can reconstruct the space from the sheaves.

Theorem (Rosenberg, Gabriel, Gabber, Brandenburg)
Let X, Y be quasi-separated schemes. If $\text{qcoh}(X) \equiv \text{qcoh}(Y)$ then X and Y are isomorphic.
Sheaves to the rescue

• All you need is modules

Theorem

Let $X = \text{Proj } R$ for a commutative, f.g. k-algebra R generated in degree 1.

1. Every coherent sheaf on X is isomorphic to \tilde{M} for some f.g. graded R-module M.

2. $\tilde{M} \cong \tilde{N}$ as sheaves if and only if there is an isomorphism $M \geq n \cong N \geq n$.

• Let $\text{gr-}R$ be the category of f.g. R-modules. Take the quotient category

$$q\text{gr-}R = \text{gr-}R/\text{fdim-}R$$

• The above says $q\text{gr-}R \equiv \text{coh}(\text{Proj } R)$.

UC San Diego
Noncommutative projective schemes

• A (not necessarily commutative) connected graded \(k \)-algebra \(A \) is

\[
A = k \oplus A_1 \oplus A_2 \oplus \cdots
\]

such that \(\dim_k A_i < \infty \) and \(A \) is a f.g. \(k \)-algebra.

Definition (Artin-Zhang, 1994)

The noncommutative projective scheme \(\text{Proj}_{\text{NC}} A \) is the triple

\((\text{qgr}-A, \mathcal{A}, S)\)

where \(\mathcal{A} \) is the distinguished object and \(S \) is the shift functor.

• Idea: Use geometry to study \(\text{Proj}_{\text{NC}} A = \text{qgr}-A \) to study \(A \).
All you need is modules

- Can attempt to do any geometry that only relies on the module category.
- If X is a commutative projective \mathbb{k}-scheme, for each $x \in X$, there is the skyscraper sheaf $\mathbb{k}(x) \in \text{coh}(X)$.
- So the simple objects of $\text{coh}(X)$ correspond to points of X.
- A point module is a graded right module M such that M is cyclic, generated in degree 0, and has $\dim_{\mathbb{k}} M_n = 1$ for all n.
- Fact: If A is f.g. connected graded noetherian \mathbb{k}-algebra generated in degree 1, then the point modules are simple objects of $\text{qgr-}A$.
- “Points” of $\text{Proj}_{\text{NC}} A = \text{simple modules}$.
Twisted homogeneous coordinate rings

• We can go from rings to schemes via Proj.

 \[\mathcal{R} \leadsto \text{Proj} \, \mathcal{R} \]

• Can we go back? (Certainly not uniquely: \(\text{Proj} \, \mathcal{R}^{(d)} \cong \text{Proj} \, \mathcal{R} \).)
• \(X \) a projective scheme, \(\mathcal{L} \) a line bundle on \(X \)
• The homogeneous coordinate ring is

 \[B(X, \mathcal{L}) = \mathbb{k} \oplus \bigoplus_{n \geq 1} H^0(X, \mathcal{L}^\otimes n). \]

Theorem (Serre)

Assume \(\mathcal{L} \) is ample. Then

1. \(B = B(X, \mathcal{L}) \) is a f.g. graded noetherian \(\mathbb{k} \)-algebra.
2. \(X = \text{Proj} \, B \) so qgr-\(B \equiv \text{coh}(X) \).
Twisted homogeneous coordinate rings

- X a (commutative) projective scheme, \mathcal{L} a line bundle, and $\sigma \in \text{Aut}(X)$. Define

$$\mathcal{L}^\sigma = \sigma^* \mathcal{L} \text{ and } \mathcal{L}_n = \mathcal{L} \otimes \mathcal{L}^\sigma \otimes \cdots \otimes \mathcal{L}^{\sigma^{n-1}}.$$

- The twisted homogeneous coordinate ring is

$$B(X, \mathcal{L}, \sigma) = \mathbb{k} \oplus \bigoplus_{n \geq 1} H^0(X, \mathcal{L}_n).$$

- $B(X, \mathcal{L}, \sigma)$ is not necessarily commutative

Theorem (Artin-Van den Bergh, 1990)

Assume \mathcal{L} is σ-ample. Then

1. $B = B(X, \mathcal{L}, \sigma)$ is a f.g. graded noetherian \mathbb{k}-algebra.
2. $\text{qgr-}B \equiv \text{coh}(X)$.

UC San Diego
Noncommutative curves

- “The Hartshorne approach”
- A a \mathbb{k}-algebra, $V \subseteq A$ a \mathbb{k}-subspace generating A spanned by $\{1, a_1, \ldots, a_m\}$.
- $V_0 = \mathbb{k}$, V_n spanned by monomials of length n in the a_i.
- The Gelfand-Kirillov dimension of A.

$$\text{GKdim } A = \limsup_{n \to \infty} \log_n (\dim_k V_n)$$

- $\text{GKdim } \mathbb{k}[x_1, \ldots, x_m] = m$.
- So noncommutative projective curves should have $\text{GKdim } 2$.
Noncommutative curves

Theorem (Artin-Stafford, 1995)

Let A be a f.g. connected graded domain generated in degree 1 with $\text{GKdim}(A) = 2$. Then there exists a projective curve X, an automorphism σ and invertible sheaf \mathcal{L} such that up to a f.d vector space

$$A = B(X, \mathcal{L}, \sigma)$$

• As a corollary, $\text{qgr-}A \equiv \text{coh}(X)$.
• Or “noncommutative projective curves are commutative”.

UC San Diego
Noncommutative surfaces

• The “right” definition of a noncommutative polynomial ring?

Definition

A a f.g. connected graded \(k \)-algebra is **Artin-Schelter regular** if

1. \(\text{gldim} A = d < \infty \)
2. \(\text{GKdim} A < \infty \) and
3. \(\text{Ext}^i_A(\mathbb{k}, A) = \delta_{i,d} \mathbb{k} \).

• Behaves homologically like a commutative polynomial ring.
• \(\mathbb{k}[x_1, \ldots, x_m] \) is AS-regular of dimension \(m \).
• Noncommutative \(\mathbb{P}^2 \)s should be qgr-\(A \) for \(A \) AS-regular of dimension 3.
Noncommutative surfaces

Theorem (Artin-Tate-Van den Bergh, 1990)

Let A be an AS-regular ring of dimension 3 generated in degree 1. Either

(a) $A = B(X, \mathcal{L}, \sigma)$ for $X = \mathbb{P}^2$ or $X = \mathbb{P}^1 \times \mathbb{P}^1$ or
(b) $A \twoheadrightarrow B(E, \mathcal{L}, \sigma)$ for an elliptic curve E.

• Or “noncommutative \mathbb{P}^2s are either commutative or contain a commutative curve”.

• Other noncommutative surfaces (noetherian connected graded domains of GKdim 3)?

• Noncommutative \mathbb{P}^3 (AS-regular of dimension 4)?
Z-graded rings

- Throughout, “graded” really meant \(\mathbb{N} \)-graded
- Way back to our first example:
 \[
 A_1 = \mathbb{k}\langle x, y \rangle/(xy - yx - 1)
 \]
- Ring of differential operators on \(\mathbb{k}[t] \)
 - \(x \leftrightarrow t \cdot \)
 - \(y \leftrightarrow d/dt \)
- \(A \) is \(\mathbb{Z} \)-graded by \(\deg x = 1, \deg y = -1 \)
- Simple noetherian domain of GK dim 2
- Exists an outer automorphism \(\omega \), reversing the grading
 \[
 \omega(x) = y \quad \omega(y) = -x
 \]
Sierra (2009)

- Sue Sierra, *Rings graded equivalent to the Weyl algebra*
- Classified all rings graded Morita equivalent to A_1
- Examined the graded module category $\text{gr}-A_1$:

 ![Diagram](image)

 - For each $\lambda \in \mathbb{k} \setminus \mathbb{Z}$, one simple module M_λ
 - For each $n \in \mathbb{Z}$, two simple modules, $X\langle n \rangle$ and $Y\langle n \rangle$

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
</table>

- For each n, exists a nonsplit extension of $X\langle n \rangle$ by $Y\langle n \rangle$ and a nonsplit extension of $Y\langle n \rangle$ by $X\langle n \rangle$
Sierra (2009)

- Computed Pic(gr-A_1)
- Shift functor, S:

- Autoequivalence ω:
There exist ι_n, autoequivalences of $\text{gr}-A_1$, permuting $X\langle n \rangle$ and $Y\langle n \rangle$ and fixing all other simple modules.

Also $\iota_i \iota_j = \iota_j \iota_i$ and $\iota_n^2 \cong \text{Id}_{\text{gr}-A}$

$\text{Pic}(\text{gr}-A_1) \cong (\mathbb{Z}/2\mathbb{Z})^{(\mathbb{Z})} \times D_\infty \cong \mathbb{Z}_{\text{fin}} \times D_\infty$.

UC San Diego
• Paul Smith, *A quotient stack related to the Weyl algebra*

• Proves that $\text{Gr}-A_1 \equiv \text{Qcoh}_\chi$

• χ is a quotient stack “whose coarse moduli space is the affine line $\text{Spec} \ k[z]$, and whose stacky structure consists of stacky points $B\mathbb{Z}_2$ supported at each integer point”

• $\text{Gr}-A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}) \equiv \text{Qcoh}_\chi$
Smith (2011)

- \(\mathbb{Z}_{\text{fin}} \) the group of finite subsets of \(\mathbb{Z} \), operation XOR
- Constructs a \(\mathbb{Z}_{\text{fin}} \) graded ring

\[
C := \bigoplus_{J \in \mathbb{Z}_{\text{fin}}} \hom(A_1, \iota_J A_1) \cong \frac{\mathbb{L}[x_n \mid n \in \mathbb{Z}]}{(x_n^2 + n = x_m^2 + m \mid m, n \in \mathbb{Z})}
\]

\[
\cong \mathbb{L}[z \mid \sqrt{z - n}]
\]

where \(\deg x_n = \{n\} \)
- \(C \) is commutative, integrally closed, non-noetherian PID

Theorem (Smith)

There is an equivalence of categories

\[
\text{Gr-}A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}).
\]
Theorem (Artin-Stafford, 1995)
Let A be a f.g. connected \mathbb{N}-graded domain generated in degree 1 with $\text{GKdim}(A) = 2$. Then there exists a projective curve X such that
\[\text{qgr-}A \equiv \text{coh}(X). \]

Theorem (Smith, 2011)
A_1 is a f.g. \mathbb{Z}-graded domain with $\text{GKdim}(A_1) = 2$. There exists a commutative ring C and quotient stack χ such that
\[\text{Gr-}A_1 \equiv \text{Gr}(C, \mathbb{Z}_\text{fin}) \equiv \text{Qcoh}(\chi). \]
Generalized Weyl algebras (GWAs)

- Introduced by V. Bavula
- D a ring; $\sigma \in \text{Aut}(D)$; $a \in \mathbb{Z}(D)$
- The generalized Weyl algebra $D(\sigma, a)$ with base ring D

$$D(\sigma, a) = \frac{D\langle x, y \rangle}{\left(\begin{array}{c} xy = a \\ yx = \sigma(a) \\ dx = x\sigma(d), d \in D \\ dy = y\sigma^{-1}(d), d \in D \end{array} \right)}$$

Theorem (Bell-Rogalski, 2015)

Every *simple* \mathbb{Z}-graded domain of GKdim 2 is graded Morita equivalent to a GWA.
The main object

- $D = \mathbb{k}[z]; \quad \sigma(z) = z - 1; \quad a = f(z)$

$$A(f) \cong \frac{\mathbb{k}\langle x, y, z \rangle}{(xy = f(z), yx = f(z - 1), xz = (z + 1)x, yz = (z - 1)y)}$$

- Two roots α, β of $f(z)$ are congruent if $\alpha - \beta \in \mathbb{Z}$

Example (The first Weyl algebra)

Take $f(z) = z$

$$D(\sigma, a) = \frac{\mathbb{k}[z]\langle x, y \rangle}{(xy = z, yx = z - 1, zx = x(z - 1), zy = y(z + 1))} \cong \frac{\mathbb{k}\langle x, y \rangle}{(xy - yx - 1)} = A_1.$$
The main object

Properties of $A(f)$:

- Noetherian domain
- Krull dimension 1
- Simple if and only if no congruent roots
- $\text{gl.dim. } A(f) = \begin{cases}
1, & f \text{ has neither multiple nor congruent roots} \\
2, & f \text{ has congruent roots but no multiple roots} \\
\infty, & f \text{ has a multiple root}
\end{cases}$
- We can give $A(f)$ a \mathbb{Z} grading by $\deg x = 1$, $\deg y = -1$, $\deg z = 0$
Questions and strategy

For these generalized Weyl algebras $A(f)$:

- What does $\text{gr}-A(f)$ look like?
- What is $\text{Pic}(\text{gr}-A(f))$?
- Can we construct a commutative Γ-graded ring C such that $\text{gr}(C, \Gamma) \equiv \text{gr}-A(f)$?

Strategy:

- First quadratic f
- Distinct, non-congruent roots
- Congruent roots
- Double root
Distinct, non-congruent roots

Let $f(z) = z(z + \alpha)$ for some $\alpha \in k \setminus \mathbb{Z}$.

$$A = A(f) \cong \mathbb{k}\langle x, y, z \rangle \cong \begin{pmatrix}
xy = z(z + \alpha) & yx = (z - 1)(z + \alpha - 1) \\
xz = (z + 1)x & yz = (z - 1)y
\end{pmatrix}$$

- We still have A is simple, $\text{K.dim}(A) = \text{gl.dim}(A) = 1$
- Still exists an outer automorphism ω reversing the grading

$$\omega(x) = y \quad \omega(y) = x \quad \omega(z) = 1 + \alpha - z$$
Distinct, non-congruent roots

Graded simple modules:

- One simple graded module M_λ for each $\lambda \in k \setminus (\mathbb{Z} \cup \mathbb{Z} + \alpha)$
- For each $n \in \mathbb{Z}$ two simple modules $X^0\langle n \rangle$ and $Y^0\langle n \rangle$
- For each $n \in \mathbb{Z}$ two simple modules $X^\alpha\langle n \rangle$ and $Y^\alpha\langle n \rangle$
- A nonsplit extension of $X^0\langle n \rangle$ by $Y^0\langle n \rangle$ and vice versa
- A nonsplit extension of $X^\alpha\langle n \rangle$ by $Y^\alpha\langle n \rangle$ and vice versa
Distinct, non-congruent roots

Theorem (W)

There exist numerically trivial autoequivalences, \(\iota_{(n,\emptyset)} \) permuting \(X^0\langle n \rangle \) and \(Y^0\langle n \rangle \) and fixing all other simple modules. Similarly, there exist \(\iota_{(\emptyset,n)} \) permuting \(X^\alpha\langle n \rangle \) and \(Y^\alpha\langle n \rangle \).

\[
\text{Pic}(\text{gr-}A) \cong (\mathbb{Z}/2\mathbb{Z})^{(\mathbb{Z})} \rtimes D_{\infty}
\]
Distinct, non-congruent roots

- Define a $\mathbb{Z}_{\text{fin}} \times \mathbb{Z}_{\text{fin}}$ graded ring C:

$$C = \mathbb{k}[a_n, b_n \mid n \in \mathbb{Z}]$$

modulo the relations

$$a_n^2 + n = a_m^2 + m \quad \text{and} \quad a_n^2 = b_n^2 + \alpha \quad \text{for all} \quad m, n \in \mathbb{Z}$$

with $\deg a_n = (\{n\}, \emptyset)$ and $\deg b_n = (\emptyset, \{n\})$

Theorem (W)

There is an equivalence of categories $\text{gr}(C, \mathbb{Z}_{\text{fin}} \times \mathbb{Z}_{\text{fin}}) \equiv \text{gr}-A$.
Multiple root

Let \(f(z) = z^2 \).

\[
A = A(f) \cong \frac{\mathbb{k}\langle x, y, z \rangle}{\langle xy = z^2, yx = (z - 1)^2 \rangle}
\]

\[
\begin{aligned}
&x z = (z + 1)x,
y z = (z - 1)y,
\end{aligned}
\]

• \(\text{K.dim}(A) = 1 \)

• Exists an outer automorphism \(\omega \) reversing the grading

\[
\omega(x) = y \quad \omega(y) = x \quad \omega(z) = 1 - z
\]

• Now \(\text{gl.dim}(A) = \infty \)
Multiple root

The graded simple modules

- For each $\lambda \in k \setminus \mathbb{Z}$, M_λ
- For each $n \in \mathbb{Z}$, $X\langle n \rangle$ and $Y\langle n \rangle$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
</table>

- Nonsplit extensions of $X\langle n \rangle$ by $Y\langle n \rangle$ and vice versa. Also self-extensions of $X\langle n \rangle$ by $X\langle n \rangle$ and $Y\langle n \rangle$ and $Y\langle n \rangle$.
Theorem (W)

There exist numerically trivial autoequivalences, ι_n permuting $X\langle n \rangle$ and $Y\langle n \rangle$ and fixing all other simple modules.

\[\text{Pic}(\text{gr-}A) \cong (\mathbb{Z}/2\mathbb{Z})^{(\mathbb{Z})} \rtimes D_\infty \]
Multiple root

Define a \mathbb{Z}_{fin} graded ring B:

$$B = \bigoplus_{J \in \mathbb{Z}_{\text{fin}}} \hom_A(A, \iota J A) \cong \frac{\mathbb{k}[z][a_n \mid n \in \mathbb{Z}]}{(b_n^2 = (z + n)^2 \mid n \in \mathbb{Z})}.$$

Theorem (W)

B is a reduced, non-noetherian, non-domain of Kdim 1 with uncountably many prime ideals.

Theorem (W)

There is an equivalence of categories $\text{gr}(B, \mathbb{Z}_{\text{fin}}) \equiv \text{gr}-A$.

Z-graded rings

November 9, 2015
Two congruent roots

Let \(f(z) = z(z + m) \) for some \(m \in \mathbb{N} \).

\[
A = A(f) \cong \frac{\mathbb{K}\langle x, y, z \rangle}{\begin{pmatrix}
xy = z(z + m) & yx = (z - 1)(z + m - 1) \\
(xz = (z + 1)x & yz = (z - 1)y
\end{pmatrix}}
\]

What do we lose?

- \(A \) no longer simple
- There exist new finite-dimensional simple modules
- Now \(\text{gl.dim}(A) = 2 \)

What remains?

- Still have \(\text{K.dim}(A) = 1 \)
- Still exists an outer automorphism \(\omega \) reversing the grading

\[
\omega(x) = y \quad \omega(y) = x \quad \omega(z) = 1 + m - z
\]
Two congruent roots

The graded simple modules

- For each $\lambda \in k \setminus \mathbb{Z}, M_{\lambda}$
- For each $n \in \mathbb{Z}, X\langle n \rangle, Y\langle n \rangle, \text{ and } Z\langle n \rangle$

- $Z\langle n \rangle$ is finite dimensional
- proj. dim $Z\langle n \rangle = 2$

- Leads to "more" finite length modules than in previous cases
Two congruent roots

Theorem (W)
If \mathcal{F} is an autoequivalence of gr-A then there exists $a = \pm 1$ and $b \in \mathbb{Z}$ such that

$$\{\mathcal{F}(X\langle n \rangle), \mathcal{F}(Y\langle n \rangle)\} \cong \{X\langle an + b \rangle, Y\langle an + b \rangle\}$$

and

$$\mathcal{F}(Z\langle n \rangle) \cong Z\langle an + b \rangle.$$
Two congruent roots

- In this case, finite dimensional modules $\mathbb{Z}\langle n \rangle$.
- Consider the quotient category

$$qgr-A = \text{gr-}A/\text{fdim-}A$$

Theorem (W)
There is an equivalence of categories $\text{gr}(B, \mathbb{Z}_{\text{fin}}) \equiv qgr-A$.
The upshot

In all cases,

- There exist numerically trivial autoequivalences permuting X and Y and fixing all other simples.
- $\text{Pic}(\text{gr-}A(f)) \cong (\mathbb{Z}_2)^\mathbb{Z} \rtimes D_\infty$.
- There exists a \mathbb{Z}_{fin}-graded commutative ring R such that
 \[\text{qgr-}A(f) \equiv \text{gr}(R, \mathbb{Z}_{\text{fin}}). \]
Questions

- \mathbb{Z}_{fin}-grading on B gives an action of $\text{Spec } k\mathbb{Z}_{\text{fin}}$ on $\text{Spec } B$

$$\chi = \left[\frac{\text{Spec } B}{\text{Spec } k\mathbb{Z}_{\text{fin}}} \right]$$

- What are the properties of χ?
- Other \mathbb{Z}-graded domains of GK dimension 2?
- GWAs defined by non-quadratic f? Other base rings D?
 - $U(sl(2))$
 - Quantum Weyl algebra
 - Simple \mathbb{Z}-graded domains
Questions

Theorem (Smith, 2011)

A_1 a \mathbb{Z}-graded domain of GK dim 2. Stack χ such that

$$\text{Gr-}A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}) \equiv \text{Qcoh}(\chi).$$

• For A a \mathbb{Z}-graded domain of GK dim 2, is there always a stack?
• Construction of B: $\Gamma \subseteq \text{Pic}(\text{gr-}A)$

$$B = \bigoplus_{\mathcal{F} \in \Gamma} \text{Hom}_{\text{qgr-}A}(A, \mathcal{F}A)$$

• Take $\Gamma = \left\langle S \right\rangle = \mathbb{Z}$ then $B = A$.
• Opposite view: \mathcal{O} a quasicoherent sheaf on χ:

$$\bigoplus_{n \in \mathbb{Z}} \text{Hom}_{\text{Qcoh}(\chi)}(\mathcal{O}, S^n\mathcal{O})$$

UC San Diego