The category of graded modules of a generalized Weyl algebra

Joint Mathematics Meetings, Seattle, WA

Robert Won
University of California, San Diego
Overview

1 Known
 Graded modules over the first Weyl algebra

2 Know
 Graded modules over generalized Weyl algebras

3 Now
 Future direction
The Weyl algebra

• Throughout, $\mathbb{k} = \overline{\mathbb{k}}$, $\text{char}(\mathbb{k}) = 0$
• A noncommutative \mathbb{k}-algebra, the first Weyl algebra
 \[A_1 = \mathbb{k}\langle x, y \rangle / (xy - yx - 1) \]
• A_1 is \mathbb{Z}-graded by $\deg x = 1$, $\deg y = -1$
• Exists an outer automorphism ω, reversing the grading
 \[\omega(x) = y \quad \omega(y) = -x \]
Sierra (2009)

• Sue Sierra, *Rings graded equivalent to the Weyl algebra*
• Examined the graded module category $\text{gr-}A_1$:

- For each $\lambda \in \mathbb{k} \setminus \mathbb{Z}$, one simple module M_λ
- For each $n \in \mathbb{Z}$, two simple modules, $X\langle n \rangle$ and $Y\langle n \rangle$
• Computed $\text{Pic}(\text{gr-}A_1)$ (autoequivalences of $\text{gr-}A_1$)

• Shift functor, S:

• Autoequivalence ω:
There exist ι_n, autoequivalences of gr-A_1, permuting $X\langle n \rangle$ and $Y\langle n \rangle$ and fixing all other simple modules.
Smith (2011)

• Paul Smith, *A quotient stack related to the Weyl algebra*

\[\text{Gr-}A_1 \equiv \text{Qcoh} \chi \]

• Proves that \(\text{Gr-}A_1 \equiv \text{Qcoh} \chi \)

• \(\chi \) is a quotient stack “whose coarse moduli space is the affine line \(\text{Spec } k[z] \), and whose stacky structure consists of stacky points \(B\mathbb{Z}_2 \) supported at each integer point”

• \(\text{Gr-}A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}) \equiv \text{Qcoh} \chi \)
• \mathbb{Z}_{fin} the group of finite subsets of \mathbb{Z}, operation XOR
• Constructs a \mathbb{Z}_{fin} graded ring

$$C := \bigoplus_{J \in \mathbb{Z}_{\text{fin}}} \text{hom}(A, \iota_J A) \cong \mathbb{k}[z] [\sqrt{z - n} \mid n \in \mathbb{Z}]$$

where $\deg \sqrt{z - n} = \{n\}$
• C is commutative, integrally closed, non-noetherian PID

Theorem (Smith, 2011)

There is an equivalence of categories

$$\text{Gr}-A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}).$$
Z-graded geometry?

<table>
<thead>
<tr>
<th>Theorem (Artin-Stafford, 1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let A be a f.g. connected \mathbb{N}-graded domain generated in degree 1 with $\text{GKdim}(A) = 2$. Then there exists a projective curve X such that</td>
</tr>
<tr>
<td>$qgr-A \equiv \text{coh}(X)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Smith, 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 is a f.g. \mathbb{Z}-graded domain with $\text{GKdim}(A_1) = 2$. There exists a commutative ring C and quotient stack χ such that</td>
</tr>
<tr>
<td>$\text{Gr}-A_1 \equiv \text{Gr}(C, \mathbb{Z}_{\text{fin}}) \equiv \text{Qcoh}(\chi)$.</td>
</tr>
</tbody>
</table>
Generalized Weyl algebras (GWAs)

- For \(f \in k[z] \), the generalized Weyl algebra defined by \(f \)

\[
A(f) \cong \frac{k\langle x, y, z \rangle}{\left(\begin{array}{c} xy = f(z) \\
yx = f(z - 1) \\
xz = (z + 1)x \\
yz = (z - 1)y \end{array} \right)}
\]

- \(\mathbb{Z} \)-graded by \(\deg x = 1, \deg y = -1, \deg z = 0 \)

Example (The first Weyl algebra)

Take \(f = z \)

\[
A(f) = \frac{k\langle x, y, z \rangle}{\left(\begin{array}{c} xy = z \\
yx = z - 1 \\
zx = x(z - 1) \\
zy = y(z + 1) \end{array} \right)} \cong \frac{k\langle x, y \rangle}{(xy - yx - 1)} = A_1.
\]
GWAs and graded modules

Consider quadratic f. WLOG, three cases (depending on the roots of f)

- $f = z(z + \alpha), \alpha \notin \mathbb{Z}$

$$\begin{align*}
\alpha - 2 & & \alpha - 1 & & \alpha & & \alpha + 1 \\
-2 & & -1 & & 0 & & 1 & & 2
\end{align*}$$

- $f = z^2$

$$\begin{align*}
-3 & & -2 & & -1 & & 0 & & 1 & & 2 & & 3
\end{align*}$$

- $f = z(z + \alpha), \alpha \in \mathbb{N}$

$$\begin{align*}
-3 & & -2 & & -1 & & 0 & & 1 & & 2 & & 3
\end{align*}$$
GWAs and graded modules

Theorem (W)

For all quadratic f, there exist autoequivalences permuting $X\langle n \rangle$ and $Y\langle n \rangle$ and fixing all other simple modules.

Theorem (W)

For all quadratic f, there exists a \mathbb{Z}_{fin}-graded commutative ring $B(f)$ such that

$$qgr-A(f) \equiv \text{gr}(B(f), \mathbb{Z}_{\text{fin}}).$$
GWAs and graded modules

If \(f = z(z + \alpha) \) for \(\alpha \in \mathbb{Z} \), then

\[
B(f) = \bigoplus_{J \in \mathbb{Z}_{\text{fin}}} \text{hom}_A(A, \nu_J A) \cong \frac{\mathbb{k}[z][a_n \mid n \in \mathbb{Z}]}{(a_n^2 = (z + n)^2 \mid n \in \mathbb{Z})}.
\]

Theorem (W)

\(B(f) \) is a reduced, non-noetherian, non-domain of Kdim 1 with uncountably many prime ideals.

If \(f = z(z + \alpha) \) for \(\alpha \notin \mathbb{Z} \), then

\[
B(f) \cong \frac{\mathbb{k}[z][a_n, b_n \mid n \in \mathbb{Z}]}{(a_n^2 = z + n, b_n^2 = z + n + \alpha \mid n \in \mathbb{Z})}.
\]
Questions

• \mathbb{Z}_{fin}-grading on B gives an action of $\text{Spec } \mathbb{k}\mathbb{Z}_{\text{fin}}$ on $\text{Spec } B$

\[
\chi = \begin{bmatrix}
\text{Spec } B \\
\text{Spec } \mathbb{k}\mathbb{Z}_{\text{fin}}
\end{bmatrix}
\]

• What are the properties of χ?
• Other \mathbb{Z}-graded domains of GK dimension 2?
• GWAs defined by non-quadratic f? Other base rings D?
 • $U(\mathfrak{sl}(2))$
 • Quantum Weyl algebra
 • Simple \mathbb{Z}-graded domains
Questions

• Construction of B: $\Gamma \subseteq \text{Pic} (\text{gr-A})$

$$B = \bigoplus_{\mathcal{F} \in \Gamma} \text{Hom}_{\text{qgr-A}}(A, \mathcal{F}A)$$

• Take $\Gamma = \langle S \rangle = \mathbb{Z}$ then $B = A$.

• Opposite view: \mathcal{O} a quasicoherent sheaf on χ:

$$\bigoplus_{n \in \mathbb{Z}} \text{Hom}_{\text{Qcoh}(\chi)}(\mathcal{O}, S^n\mathcal{O})$$