Curve name | X101f | |||||||||
Index | 48 | |||||||||
Level | 8 | |||||||||
Genus | 0 | |||||||||
Does the subgroup contain −I? | No | |||||||||
Generating matrices | [1241],[1005],[3047],[7601] | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | X101 | |||||||||
Curves that X101f minimally covers | ||||||||||
Curves that minimally cover X101f | ||||||||||
Curves that minimally cover X101f and have infinitely many rational points. | ||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−113246208t16+141557760t14−74317824t12+21233664t10−3594240t8+373248t6−24624t4+1080t2−27 B(t)=463856467968t24−869730877440t22+728399609856t20−359216971776t18+115511132160t16−25225592832t14+3746856960t12−361304064t10+18994176t8−44928t6−59616t4+3240t2−54 | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3−345891x+78186850, with conductor 7056 | |||||||||
Generic density of odd order reductions | 41/336 |