Curve name | $X_{25}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | $\tilde{X}_{1}(2,4)$ | ||||||
Chosen covering | $X_{8}$ | ||||||
Curves that $X_{25}$ minimally covers | $X_{8}$, $X_{12}$, $X_{13}$ | ||||||
Curves that minimally cover $X_{25}$ | $X_{58}$, $X_{62}$, $X_{87}$, $X_{96}$, $X_{98}$, $X_{99}$, $X_{100}$, $X_{101}$, $X_{129}$, $X_{142}$, $X_{25a}$, $X_{25b}$, $X_{25c}$, $X_{25d}$, $X_{25e}$, $X_{25f}$, $X_{25g}$, $X_{25h}$, $X_{25i}$, $X_{25j}$, $X_{25k}$, $X_{25l}$, $X_{25m}$, $X_{25n}$ | ||||||
Curves that minimally cover $X_{25}$ and have infinitely many rational points. | $X_{58}$, $X_{62}$, $X_{87}$, $X_{96}$, $X_{98}$, $X_{99}$, $X_{100}$, $X_{101}$, $X_{25a}$, $X_{25b}$, $X_{25c}$, $X_{25d}$, $X_{25e}$, $X_{25f}$, $X_{25g}$, $X_{25h}$, $X_{25i}$, $X_{25j}$, $X_{25k}$, $X_{25l}$, $X_{25m}$, $X_{25n}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{25}) = \mathbb{Q}(f_{25}), f_{8} = -2f_{25}^{2} + 1\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 2430x - 42449$, with conductor $3465$ | ||||||
Generic density of odd order reductions | $5/42$ |