| Curve name |
$X_{101m}$ |
| Index |
$48$ |
| Level |
$8$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{101}$ |
| Curves that $X_{101m}$ minimally covers |
|
| Curves that minimally cover $X_{101m}$ |
|
| Curves that minimally cover $X_{101m}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -7077888t^{12} + 5308416t^{10} - 1548288t^{8} + 221184t^{6} -
17280t^{4} + 864t^{2} - 27\]
\[B(t) = -7247757312t^{18} + 8153726976t^{16} - 3906994176t^{14} +
1040449536t^{12} - 164560896t^{10} + 14598144t^{8} - 483840t^{6} - 25920t^{4} +
2592t^{2} - 54\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 + x^2 - 38432x - 2908620$, with conductor $2352$ |
| Generic density of odd order reductions |
$17/168$ |