Curve name | $X_{102a}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{102a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{102a}$ | |||||||||||||
Curves that minimally cover $X_{102a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{14} - 648t^{13} + 2484t^{12} + 11232t^{11} - 42336t^{10} - 31104t^{9} + 319680t^{8} - 518400t^{7} + 84672t^{6} + 908928t^{5} - 1619136t^{4} + 1451520t^{3} - 760320t^{2} + 221184t - 27648\] \[B(t) = -432t^{21} - 3888t^{20} + 9072t^{19} + 117936t^{18} - 217728t^{17} - 1529280t^{16} + 4527360t^{15} + 6013440t^{14} - 42705792t^{13} + 53578368t^{12} + 69973632t^{11} - 346488192t^{10} + 659349504t^{9} - 938552832t^{8} + 1203600384t^{7} - 1358760960t^{6} + 1218945024t^{5} - 806547456t^{4} + 374685696t^{3} - 115458048t^{2} + 21233664t - 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 10804730x - 17264989353$, with conductor $22050$ | ||||||||||||
Generic density of odd order reductions | $193/1792$ |