Curve name | $X_{13}$ | ||||||
Index | $6$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves with a cyclic $4$-isogeny defined over $\mathbb{Q}$ | ||||||
Chosen covering | $X_{6}$ | ||||||
Curves that $X_{13}$ minimally covers | $X_{6}$ | ||||||
Curves that minimally cover $X_{13}$ | $X_{25}$, $X_{27}$, $X_{32}$, $X_{33}$, $X_{34}$, $X_{36}$, $X_{44}$, $X_{48}$, $X_{13a}$, $X_{13b}$, $X_{13c}$, $X_{13d}$, $X_{13e}$, $X_{13f}$, $X_{13g}$, $X_{13h}$ | ||||||
Curves that minimally cover $X_{13}$ and have infinitely many rational points. | $X_{25}$, $X_{27}$, $X_{32}$, $X_{33}$, $X_{34}$, $X_{36}$, $X_{44}$, $X_{48}$, $X_{13a}$, $X_{13b}$, $X_{13c}$, $X_{13d}$, $X_{13e}$, $X_{13f}$, $X_{13g}$, $X_{13h}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{13}) = \mathbb{Q}(f_{13}), f_{6} = -f_{13}^{2} + 48\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 23x - 34$, with conductor $315$ | ||||||
Generic density of odd order reductions | $1/7$ |