Curve name | $X_{102c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{102c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{102c}$ | |||||||||||||
Curves that minimally cover $X_{102c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{14} - 162t^{13} + 621t^{12} + 2808t^{11} - 10584t^{10} - 7776t^{9} + 79920t^{8} - 129600t^{7} + 21168t^{6} + 227232t^{5} - 404784t^{4} + 362880t^{3} - 190080t^{2} + 55296t - 6912\] \[B(t) = -54t^{21} - 486t^{20} + 1134t^{19} + 14742t^{18} - 27216t^{17} - 191160t^{16} + 565920t^{15} + 751680t^{14} - 5338224t^{13} + 6697296t^{12} + 8746704t^{11} - 43311024t^{10} + 82418688t^{9} - 117319104t^{8} + 150450048t^{7} - 169845120t^{6} + 152368128t^{5} - 100818432t^{4} + 46835712t^{3} - 14432256t^{2} + 2654208t - 221184\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 275331x - 55270334$, with conductor $7056$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |