Curve name | $X_{102e}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{102e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{102e}$ | |||||||||||||
Curves that minimally cover $X_{102e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{10} + 216t^{9} + 1620t^{8} - 6912t^{7} + 8640t^{6} + 3456t^{5} - 24192t^{4} + 34560t^{3} - 25920t^{2} + 10368t - 1728\] \[B(t) = -432t^{15} + 1296t^{14} + 9072t^{13} - 51408t^{12} + 51840t^{11} + 259200t^{10} - 1064448t^{9} + 2052864t^{8} - 2809728t^{7} + 3411072t^{6} - 3846528t^{5} + 3535488t^{4} - 2322432t^{3} + 995328t^{2} - 248832t + 27648\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 22476x - 1289104$, with conductor $4032$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |